
We appreciate the reviewers’ constructive comments. Below is our

response; we have revised the paper to address all comments. We

followed the Meta-Review order, labeling each answer with [A:(M)].

For your convenience, we highlight changes in blue in the text. Ad-

ditionally, we provided supplementary materials for your reference:

- Paper (full version): https://wangmengying.me/papers/modis.pdf.

- Code Repo: https://github.com/wang-mengying/modis.

1. Clarity and Presentation

[M1] Improve writing and fix typos (R3:W1,R4:W1).
• [R3:W1] Presentation could be improved.
• [R4:W1] The writing is fairly dense and has several typos.
[A1]We have improved the presentation, simplified the description

as needed and fixed the typos as suggested. Thanks!

[M2]Clarify key terms, including illustrations and pseudocode (R3:D1,
R3:D3, R3:D5, R4:D1).

[A2] We have clarified the key terms as suggested:

• [R3:D1,D5] Providing a clear and more technically detailed expla-
nation of transducers.
[A]:We appreciate the reviewer’s suggestion to elaborate on trans-

ducers. We have justified in Sec. 2 and clarified our choice of using

transducers as they provide a formal framework for deterministic

and efficient data discovery processes, supporting algorithm design

and quality guarantees. We have also added more on transducers

early in the introduction, as suggested.

• [R3:D3] Clarify the definition of 𝐷𝑈 and𝑈 .
[A]: 𝐷𝑈 is a “universal dataset” specifically constructed to initialize

our “reduce-from universal” generation process in Section 5.2. We

originally defined 𝐷𝑈 in our full version. We have now added its

definition back to Section 5.2, and clarified how it is constructed in

Section 6. We clarify that 𝑈 is not a numerical index as in 𝐷𝑖 but

a subscript to specify the “universal” dataset 𝐷𝑈 ; hence, it is not

overloading 𝐷𝑖 .

• [R4:D1] Improve clarity of the data reduction process with illustra-
tions or pseudocode.
[A]: We have enriched the description of the reduction operator in

Section 3. We have also enriched Example 3 to illustrate the data

reduction process with an example.

[M3] Expand on query optimization discussion or leave it for future
work (R3:D2).
• [R3:D2] Identify and elaborate on how query optimization tech-
niques could be relevant to the method. At the moment, it looks too
futuristic to integrate query optimization into the presented system.
[A3] We agree with the reviewer that this topic is good for future

work. We have revised Section 7 accordingly.

[M4] Provide a full proof for Theorem 1 or cite supporting literature
(R3:D6(2)).
• [R3:D6(2)] Include a detailed proof for Theorem 1’s NP-hardness,
especially for reduction, or cite supporting literature.
[A4] We have included a proof sketch of Theorem 1. The NP-
hardness can be verified by constructing a reduction from the Mul-

tiobjective Shortest Path problem (MOSP), a well-known NP-hard

problem [16, 37]. The MOSP problem is to compute a Pareto set

of paths from two nodes in a directed graph. We leverage our

transducer formalization and provide a reduction to enforce a con-

figuration such that each path in the instance ofMOSP simulates a

sequence of reduction-only operations in a corresponding running

graph of the generation process.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. Experimental Scope and Validation

[M5] Test framework on diverse datasets and models to demonstrate
generalizability (R4:W2).
• [R4:W2] Add broader testing across different model types and
datasets to demonstrate generalizability.
[A5]We have added two new tasks to demonstrate generalizability:

(1) Task 𝑇4, which classifies mental health status using datasets

from Kaggle, where the input model is a Light Gradient Boosting

Machine (LightGBM);

(2) Task 𝑇5, a graph neural network (GNN)-based recommendation

task, which essentially solves a link regression problem over an

input bipartite graph of “users” and “products”. We constructed a

set of bipartite graphs from Kaggle, and a GNN called Light Graph

Convolutional Neural Network, which is a class of GNNs optimized

for fast inference over large graphs. The augment and reduct oper-

ators, in this context, simply inserts or removes a set of edges to

transform a bipartite graph to another one.

𝑇5 showcases how MODis can be generalized to recommend

datasets as bipartite graphs, beyond tabular data. The details of

the experimental settings and results for tasks 𝑇4 and 𝑇5 have been

reported in Sec. 6. The details are presented in the full version [43].

These results have further verified the generality ofMODis algo-
rithms on more diverse model types and datasets.

[M6] Address scalability for large datasets and provide sensitivity
analysis for parameters (R1:W2, R2:W3).
• [R1:W2] Identify and analyze potential computational challenges
with skyline queries and state transitions on large datasets, which
could become bottlenecks without optimization strategies.
• [R2:W3] Conduct scalability testing on larger datasets and perform
sensitivity analysis on key parameters like epsilon tolerance in the
skyline set approximation.
[A6]We conducted scalability tests for𝑇1 in the initial submission

and added tests for 𝑇5, as the trend is similar, we put the results for

𝑇5 in Fig.13 in full [43]. It is important to clarify that |𝐴| and |adom|
represent the search space size extracted from the universal table,

not the original data size. As detailed in Sec.6: “We perform 𝑘-means

clustering over the tuples of the universal table with 𝑘 = |adom|,
and extended operators with range queries to control |adom|.” Re-
garding |𝐴|, we thank the reviewers for highlighting the importance

of high-dimensional datasets. In response, we proposed dimension

reduction methods and applied one to 𝑇5 and reduced |𝐴| from 34

to 10, enhancing the scalability.

For sensitivity analysis, we evaluated the impact of 𝜖 and maxl
on effectiveness (Fig. 8) and efficiency (Fig. 10) over multiple tasks

in the initial submission. Additionally, we tested their impact on

efficiency for 𝑇5 (Fig. 12) and observed trends consistent with pre-

vious results, and a more comprehensive sensitivity analysis on

1

https://wangmengying.me/papers/modis.pdf
https://github.com/wang-mengying/modis


Conference’17, July 2017, Washington, DC, USA Mengying Wang and Hanchao Ma and Yiyang Bian and Yangxin Fan and Yinghui Wu

effectiveness for 𝑇5 in Fig. 15, with all results detailed in Appendix

B in full version [43].

[M7] Discuss the impact of the diversification algorithm (R2:W4).
• [R2:W4] The actual impact of the diversification algorithm remains
under-explored, providing examples of datasets where diversification
improved performance.
[A7] We added a new Fig. 9 to show the impact of DivMODis in
terms of performance diversity and content diversity. We enriched

the discussion in Exp-2 (Sec. 6). The result verifies that DivMODis
indeed improved the model accuracy due to its ability of generating

less biased datasets for input models.

[M8] Explain the overlap in skyline datasets and clarify limitations.
• [R3:D8] Clarify why the Skyline dataset might contain overlapping
data and specify if this is due to inherent issues in the algorithms
from Sections 5.2 and 5.3 or a general problem in data integration.
[A8] We have added an explanation in Sec. 5.4, identifying two

reasons for the lack of diversity in Skyline datasets:

• Content Bias due to skewed input data, where dominant

active domains skew the Skyline set. As shown in Fig.9(b),

when 𝛼 = 0 (i.e., no diversity optimization on content), con-

tribution proportions are imbalanced, with some domains

omitted (e.g., 𝐴10).

• Performance Bias due to ApxMODis, NOBiMODis, and
BiMODis only adherence to the dominance relation, so these

methods may result in a Skyline set skewed toward specific

metrics. As shown in Fig. 9(a), when 𝛼 = 1(i.e., no diver-

sity optimization on performance), the Skyline set is heavily

skewed toward samples with higher Accuracy, neglecting

other aspects of diversity.

This highlights the need forDivMODis to address both content and

performance bias through a diversity optimization process.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. Algorithmic Justifications

[M9] Justify algorithm choices over alternatives (R2:W2, R2:D2).
• [R2:W2] Provide a detailed discussion of the design choices, explain-
ing why specific algorithms (reduce-from-universal, bi-directional,
and diversification) were selected over alternatives like evolutionary
algorithms and reinforcement learning-based approaches.
• [R2:D2] Justify the reasons for choosing these algorithms over oth-
ers, and the necessity of each algorithm withinMODis, and highlight
their specifics benefits.
[A9]We appreciate the reviewer’s insightful comments and the op-

portunity to elaborate on our design choices. At the end of Sec. 5, we

provide a detailed justification for the selected algorithms, empha-

sizing how our finite-state transducer (FST) formalization ensures

deterministic and efficient exploration with quality guarantees, and

how it avoids the limitations of alternatives such as evolutionary

algorithms (e.g., genetic algorithms) and RL-based methods, as pro-

posed by R2. Additionally, we clarify the specific roles and benefits

of each algorithm withinMODis, as suggested by R2.

[M10] Clearly explain the skyline approximation algorithm (R3:D7).
• [R3:D7] Clearly explain the Skyline approximation algorithm,
particularly its greedy nature, to make it easier to follow.

[A10] Thanks! We have simplified the description of the algorithm

but introduced more details on the greedy selection nature in the

DivMODis to improve the readability.

[M11] Discuss extending operators to inequalities and implications
for complexity (R3:D6(1))
• [R3:D6(1))] Discuss whether limiting literals to equality. Is it re-
stricted by the system? And clarify if extending to inequalities would
be straightforward or increase complexity significantly.
[A11] Thank you for highlighting this point! Enforcing equality

will not impose restrictions on the scope of the designed system.

(1) Inequalities/comparisons can be represented equivalently as a

finite disjunction of 𝑅.𝐴 = 𝑋 , with 𝑋 ranges over the values in the

finite active domain of attribute A. (2) We don’t need to enumerate

the literals as in (1), but by applying the comparison constraints as

a batch spawning of operators in the running graph. This means

|adom(𝐴) | can be maintained as finite by grouping values in 𝐴

based on comparison constraints, ensuring a manageable and ef-

ficient search space for our algorithms. We added a clarification

on this in Sec.5.1. Additionally, we detailed the grouping methods

applied for specific tasks in the scalability experiments in Sec.6.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. Comparison with Related Work

[M12] Compare with recent methods to highlight novelty (R2:W1,
R2:D1).
• [R2:W1] The paper does not sufficiently compare MODis with re-
lated frameworks in multi-objective dataset generation, for example,
HydraGAN [6].
• [R2:D1] Comparing it to other techniques, like HydraGAN [6].
[A12]Wehave added a discussion in the RelatedWorks (Sec. 1) com-

paring our method with generative data augmentation approaches

like HydraGAN [6]. HydraGAN generates new rows within a prede-

fined schema and cannot leverage external data sources. In contrast,

ourmethod discovers and extends data acrossmultiple granularities,

including rows and columns in tabular data or edges and attributes

in graph data. Furthermore, HydraGAN requires specifying a tar-

get column for each metric, limiting its flexibility, whereas our

approach supports any user-defined metrics, making it adaptable

to diverse tasks. We have also included a performance comparison

in Exp-1 (Sec. 6), highlighting the limitations of generative data

augmentation approaches under our problem definition.

[M13] Discuss limitations in contexts like high-dimensional datasets
(R4:D2).
• [R4:D2] Add a discussion on the approach’s limitations on high-
dimensional datasets, to offer a more balanced perspective.
[A13] Thank you for the suggestion! We have added a discussion

on the limitations of our approach in handling high-dimensional

datasets in Sec. 6, Exp3.We also gave two potential solutions: dimen-

sionality reduction (e.g., PCA or feature selection) and correlation-

based pruning of features. As an example, we applied feature aggre-

gation in 𝑇5 by grouping attributes from similar relations, reducing

the feature space from 34 to 10 while preserving full information

augmented into the universal graph and reported the results in

Fig. 13 in full version [43].



Generating Skyline Datasets for Data Science Models
Mengying Wang

Case Western Reserve University

Cleveland, Ohio, USA

mxw767@case.edu

Hanchao Ma

Case Western Reserve University

Cleveland, Ohio, USA

hxm382@case.edu

Yiyang Bian

Case Western Reserve University

Cleveland, Ohio, USA

yxb227@case.edu

Yangxin Fan

Case Western Reserve University

Cleveland, Ohio, USA

yxf451@case.edu

Yinghui Wu

Case Western Reserve University

Cleveland, Ohio, USA

yxw1650@case.edu

Abstract
Preparing high-quality datasets required by various data-driven AI

andmachine learningmodels has become a cornerstone task in data-

driven analysis. Conventional data discovery methods typically

integrate datasets towards a single pre-defined quality measure

that may lead to bias for downstream tasks. This paper introduces

MODis, a framework that discover datasets by optimizing multiple
user-defined, model-performance measures. Given a set of data

sources and a model, MODis selects and integrates data sources

into a skyline dataset, over which the model is expected to have

desired performance in all the performance measures. We formulate

MODis as a multi-goal finite state transducer, and derive three

feasible algorithms to generate skyline datasets. Our first algorithm

adopts a “reduce-from-universal” strategy, that starts with a univer-

sal schema and iteratively prunes unpromising data. Our second

algorithm further reduce the cost with a bi-directional strategy that

interleaves data augmentation and reduction. We also introduce

a diversification algorithm to mitigate the bias in skyline datasets.

We experimentally verify the efficiency and effectiveness of our

skyline data discovery algorithms, and showcase their applications

in optimizing data science pipelines.

1 Introduction
High-quality machine learning (ML) models have become criticale

assets for various domain sciences research. A routine task in data-

driven domain sciences is to prepare datasets that can be used to

improve such data science models. Data augmentation [36] and

feature selection [27] have been studied to suggest data for ML

models [7]. Nevertheless, they typically generate data by favoring a

pre-defined, single performance goal, such as data completeness or

feature importance. Such data may be biased and not very useful to

actually improve the model performance, and moreover, fall short

at addressing multiple user-defined ML performance measures (e.g.,
expected accuracy, training cost). Such need is evident in multi-

variable experiment optimization [23, 30, 33], feature selection [27],

and AI benchmarking [9], among others.

Discovering datasets that can improve a model over multiple
user-defined performance measures remains to be desirable yet less

studied issue. Consider the following real-world example.

Example 1:To assess the impact and causes of harmful algal blooms

(HABs) in a lake, a research team aims to forecast the chlorophyll-

a index (CI-index), a key measure of algal blooms. The team has

gathered over 50 factors (e.g., fertilizer, water quality, weather) of

Figure 1: Data generation for CI index prediction addressing
multiple user-defined ML performance criteria, in order to
improve an input ML model.

upstream rivers and watershed systems, and trained a random for-

est (RF) with a small, regional dataset. The team wishes to find new

data with important spatiotemporal and chemical attributes, to gen-

eralize the RF model. In particular, the model is expected to perform

well over such dataset in terms of three performance measures: root

mean square error (𝑅𝑀𝑆𝐸), 𝑅2 test, for “Level 2 bloom” CI-index,

and training time cost. Desirably, the data generation process can

inform what are crucial features to inspect, track where the feature
values are from, and how they are integrated from the data sources.

The research team may issue a skyline query [4] that requests:

“Generate a dataset for which our random forest model for predict-
ing ‘Level 2 bloom’ CI-index is expected to have a RMSE below 0.3,
𝑅2 score at least 0.7, and incur a training cost in 5 minutes?”

Here, the thresholds “0.3”, “0.7”, and “5 minutes” are set based

on historical performance of the RF model over a data sample.

One may apply data integration, or perform feature engineering

to refine existing datasets with important features. Nevertheless,

these methods often fall short at consistently generate data towards

optimizing user-defined ML performance, leaving alone the needs

for addressing multiple measures e.g., accuracy and training cost.

Another approach is to introduce a utility function as a linear

weighted sum of multiple measures. This turns the need into a

single objective. However, achieving both high accuracy and low

training cost can be “conflicting”; moreover, a best dataset that

optimizes such utility function may not necessarily satisfy the

expected bounds as posed for each measure in the query.

Ideally, a data generation process should provide a dataset that

ensures the model achieves best expected performance on at least



Conference’17, July 2017, Washington, DC, USA Mengying Wang, Hanchao Ma, Yiyang Bian, Yangxin Fan, and Yinghui Wu

one measure, with compromisingly good performance on the rest,

and all satisfying the user-defined bounds if any. □

The above example calls for data generation approaches that

can response to the question by providing “skyline” datasets that

can address multiple ML performance measures. More formally,

given a query that specifies an input data science model 𝑀 , a set

of source tables D = {𝐷1, . . . 𝐷𝑛}, and a set of user-defined perfor-

mance measures P (e.g., accuracy, training time, memory cost), our

task is to generate a new table from D, over which the expected

performances of𝑀 simultaneously reaches desirable goals for all

measures in P. As remarked earlier, conventional data integration

and feature engineering with a pre-defined, single optimization

objective fall short at generating data for such needs.

Moreover, a desirable data generation process should (1) declar-

atively produce such a data by simple, primitive operators that are

well supported by established query engines and data systems, (2)

perform data discovery without expensive model inference and

validation; and (3) ensure quality guarantees on the resulting sky-

line dataset, for multiple performance measures. In addition, the

generation should be efficient. This remains a challenging issue,

considering large-scale data sources and the space of new datasets

that can be generated from them.

Contribution. We introduceMODis, a multi-objective data discov-

ery framework. MODis interacts data integration and ML model

performance estimation to pursue a multi-objective data discovery
paradigm. We summarize our technical contributions as follows.

(1) We provide a formal computation model for the skyline data

generation process in terms of a finite state transducer (FST). An

FST extends finite automata by associating an output artifact that

undergoes modifications via sequences of state transitions. The

formal model is equipped with (1) simple and primitive operators,

and (2) a model performance oracle (Section 3). We use FST as an

abstract tool to describe data generation algorithms and perform

formal analysis to verify costs and provable quality guarantees.

(2) Based on the formal model, we introduce the skyline data gener-

ation problem, in terms of Pareto optimality (Section 4) . The goal

is to generate a skyline set of datasets, such that each ensures at

least one performance measure, for which the model has expected

performance not worse than using other datasets. While the prob-

lem is intractable, we present a fixed-parameter tractable result, for

a polynomially bounded dataset exploration space encoded by the

running graph of a FST process, and a fixed measures set P.

Based on the above formulation, we provide three feasible algo-

rithms to generate skyline datasets.

(3) Our first algorithm provides an approximation on Pareto optimal

datasets by exploring and verifying a bounded number of datasets

that can be generated from data sources (Section 5.1). The algorithm

adopts a “reduce-from-universal” strategy to dynamically drop

values from a universal dataset towards a Pareto optimal set of

tables. We show that this algorithm approximates Skyline set within

a factor of (1 + 𝜖) for all performance metric, and ensures exact

dominance for at least onemeasure. In addition, we present a special

case with a fully polynomial time approximation.

(4) Our second algorithm further reduces unnecessary computation.

It follows a bi-directional scheme to prune unpromising data, and

leverages a correlation analysis of the performance metrics to early

terminate the search (Section 5.3).

(5) Moreover, we introduce a diversification algorithm to mitigate

the impact of data bias (Section 5.4). We show that the algorithm

achieves a
1

4
-approximation to an optimal diversified skyline dataset

among all verified (1 + 𝜖) counterparts.
Using real benchmark datasets and tasks, we experimentally

verify the effectiveness of our data discovery scheme. We found

thatMODis is practical in use. For example, our algorithms take 30

seconds to generate new data, that can improve input models by

1.5-2 times in accuracy and simultaneously reduces their training

cost by 1.7 times. It outperforms baseline approaches that sepa-

rately performs data integration or feature selection; and remains

feasible for larger datasets. Our case study also verified its practical

application in domain science tasks.

Related works. We categorize related works as follows.

Feature Selection. Feature selection removes irrelevant and redun-

dant attributes and identifies important ones for model training [27].

Filtering methods rank features in terms of correlation or mutual

information [32, 35] and choose the top ones. They typically assume

linear correlation among features, omitting collective effects from

feature sets and hence are often limited to support directly optimiz-

ing model performance. Our method differs from feature selection

in the following. (1) It generates skyline dataset with primitive data

augmentation and reduction operators, beyond simply dropping

the entire columns. (2) We generate data that improves the model

over multiple ML performance measures, beyond retaining critical

features; and (3) our method does not require internal knowledge

of the models or incur learning overhead.

Data Augmentation. Data augmentation aims to create data from

multiple data sources towards a unified view [7, 11, 36, 48]. It is often

specified to improve data completeness and richness [36] and may

be sensitive to the quality of schema. Our method aimes to generate

data to improve the expected performance of data-driven mod-

els. This is different from the conventional data integration which

mostly focuses on improving the data completeness. Generative

data augmentation [6] synthesize new rows for multi-objective op-

timization with a predefined schema. In contrast,MODis generates
data with both rows and columns manipulation. Also, HydraGAN

requires a target column for each metric, while MODis supports
user-defined metrics with configurable generation.

Data Discovery. Data discovery aims to prepare datasets for ML

models [11, 14, 18, 25, 36]. For example, Kitana [18] computes data

profiles (e.g., MinHash) and factorized sketches for each dataset to

build a join plan, and then evaluates the plan using a proxy model.

METAM [14] involves the downstream task with a utility score

for joinable tables. Comparing with prior work, we formalize data

generation with cell-level operators, beyond joins. We target multi-

objective datasets and provide formalization in terms of Pareto

optimality. We also provide algorithms with quality guarantees and

optimization techniques.

Model Estimation. Model estimation aims to provide accurate esti-

mation of a model’s performance without incurring expensive re-

training and inference cost. For example, AutoML [20, 31, 45] train

-surrogate models to estimate model performance [20, 31, 45], or



Generating Skyline Datasets for Data Science Models Conference’17, July 2017, Washington, DC, USA

predict the model performance by learning from past attempts [13]

or Reinforcement Learning [10]. Model selection [42] leverages

metadata and historical observations to build graph neural network-

based estimator for estimating model performance. Our work lever-

age Multi-output Gradient Boosting as the surrogate model for fast

and reliable estimation, and benefits from established ML perfor-

mance estimation approaches or other surrogate models.

2 Models and Performance Evaluation
We start with several notations used inMODis framework.

Datasets. A dataset 𝐷 (𝐴1, . . . 𝐴𝑚) is a structured table instance

that conforms to a local schema 𝑅𝐷 (𝐴1, . . . 𝐴𝑚). Each tuple 𝑡 ∈ 𝐷

is a m-ary vector, where 𝑡 .𝐴𝑖 = 𝑎 (𝑖 ∈ [1,𝑚]) means the 𝑖th attribute

𝐴𝑖 of 𝑡 is assigned a value 𝑎. A dataset may have missing values at

some attribute 𝐴 (i.e., 𝑡 .𝐴 = ∅).
Given a set of datasetsD = {𝐷1, . . . 𝐷𝑛}, each dataset𝐷𝑖 confirms

to a local schema 𝑅𝑖 . The universal schema 𝑅𝑈 is the union of the

local schemas of datasets inD, i.e., a set of all the attributes involved
in D. The active domain of an attribute 𝐴 from 𝐷𝑈 , denoted as

adom(𝐴), refers to the finite set of its distinct values occurring in

D. The size of adom(𝐴), denoted as |adom(𝐴) |, is the number of

distinct values of 𝐴 in D.

Models. A data science model (or simply “model”) is a function in

the form of 𝑀 : 𝐷 → R𝑑 , which takes as input a dataset 𝐷 , and

outputs a result embedding in R𝑑 for some 𝑑 ∈ N. Here R andN are

real and integer sets. In practice,𝑀 can be a pre-trained machine

learning model, a statistical model, or a simulator. The input 𝐷 may

represent a feature matrix (a set of numerical feature vectors), or

a tensor (from real-world physical systems), to be used for a data

science model𝑀 as training or testing data. The output embedding

can be conveniently converted to task-dependent output (e.g., labels
for classification, discrete cluster numbers for clustering, or Boolean

values for outlier detection) with post-processing.

Fixed Deterministic models. We say a model 𝑀 is fixed, if its com-

putation process does not change for fixed input. For example, a

regression model𝑀 is fixed if any factors that determines its infer-

ence (e.g., number of layers, learned model weights) remain fixed.

The model 𝑀 is deterministic if it always outputs the same result

for the same input. We consider fixed, deterministic models for the

needs of consistent performance, which is a desired property in

ML-driven data analytical tasks.

Model Evaluation. A performance measure 𝑝 (or simply “measure”)

is a performance indicator of a model 𝑀 , such as accuracy e.g.,
precision, recall, F1 score (for classification); or mean average error

(for regression analysis). It may also be a cost measure such as

training time, inference time, or memory consumption.

We use the following settings.

(1) We unify P as a set of normalized measures to be minimized,
with a range (0, 1]. Measures to be maximized (e.g., accuracy) can
be easily converted to an inversed counterpart (e.g., relative error).
(2) Each measure 𝑝 ∈ P has an optional range [𝑝𝑙 , 𝑝𝑢 ] ∈ (0, 1]. It
specifies desired lower bound 𝑝𝑙 or an upper bound 𝑝𝑢 for model

performance, such as maximum training or inference time, memory

capacity, or error ranges.

Symbol Notation
D, 𝐷 , 𝐷𝑈 a set of datasets, a single dataset, universal table

𝑅𝐷 , 𝑅𝑈 local schema of 𝐷 , and universal schema

A, 𝐴, adom(𝐴) attribute set, attribute, and active domain

𝑀 a data science model 𝐷 → R𝑑
P, 𝑝 , (𝑝𝑙 , 𝑝𝑢 ) perform. measures, a measure, its range

𝑇 , 𝑡 = (𝑀,𝐷, P) , 𝑡 .P test set; single test, its performance vector

T = (𝑠𝑀 , S, O, S𝐹 , 𝛿 ) a data discovery system

E a performance estimation model

𝐶 = (𝑠𝑀 , O, 𝑀,𝑇 , E) a configuration of data discovery system

𝐺T = (V, 𝛿 ) running graph

𝑠 ≺ 𝑠′ , 𝐷 ≺ 𝐷 ′
state dominance, dataset dominance

Table 1: Table of notations

Remarks. As we unify P as a set of measures to be minimized, it

is intuitive that an upper bound 𝑝𝑢 specifies a “tollerence” for the

estimated performance. We necessarily introduce a “lower bound”

𝑝𝑙 > 0 for the convinience of (1) ensuring well-defined theoretical

quality guarantees (as will be discussed in Section 5.1), and (2)

leaving the option open to users for the configuration needs of

downstream tasks such as testing, comparison or benchmarking.

Estimators. A performance measure 𝑝 ∈ P can often be efficiently

estimated by an estimation model E (or simply “estimator”), in

PTIME in terms of |𝐷 | (the number of tuples in 𝐷). An estimator

E makes use of a set of historically observed performance of 𝑀

(denoted as 𝑇 ) to infer its performance over a new dataset. It can

be a regression model that learns from historical tuning records 𝑇

to predict the performance of𝑀 given a new dataset 𝐷 .

By default, we use a multi-output Gradient Boosting Model [34]

that allows us to obtain the performance vector by a single call

with high accuracy (see Section 6).

Tests. Given a model𝑀 and a dataset 𝐷 , a test 𝑡 is a triple (𝑀,𝐷,P),
which specifies a test dataset 𝐷 , an input model 𝑀 , and a set of

user-defined measures P = {𝑝1, . . . 𝑝𝑙 }. A test tuple 𝑡 = (𝑀,𝐷,P) is
valuated by an estimator E if each of its measure 𝑝 ∈ P is assigned

a (estimated) value by E.
Example 2: Consider Example 1. A pre-trained random forest (RF)
model𝑀 that predicts CI-index is evaluated by three measures P =

{RMSE, R2, Ttrain}, which specifies the root mean square error, the

𝑅2 score, and the training cost. A user specifies a desired normalized

range of RMSE to be within (0, 0.6], R2 in [0, 0.35] w.r.t. a “inversed”
lower bound 1 − 0.65, and Ttrain in (0, 0.5] w.r.t. an upper bound of

“3600 seconds” (i.e., no more than 1800 seconds). □

We summarize the main notations in Table 1.

3 Skyline Dataset Generation: A Formalization
Given datasets D, an input model𝑀 and a set of measures P, we

formalize the generation process of a skyline dataset with a “multi-

goals” finite state transducer (FST). An FST extends extends finite

automata by associating outputs with transitions. We use FST to

abstract and characterize the generation of Skyline datasets as a

data transformation process. We introduce this formalization, with

a counterpart for data integration [7, 26], to help us characterize

the computation of skyline dataset generation.

Data Generator. A skyline dataset generator is a finite-state trans-

ducer, denoted as T = (𝑠𝑀 ,S,O,S𝐹 , 𝛿), where (1)S is a set of states,



Conference’17, July 2017, Washington, DC, USA Mengying Wang, Hanchao Ma, Yiyang Bian, Yangxin Fan, and Yinghui Wu

(2) 𝑠𝑀 ∈ S is a designated start state, (3) O is a set of operators of

types {⊕, ⊖}; (4) S𝐹 is a set of output states; and (5) 𝛿 refers to a

set of transitions. We next specify its components.

States. A state 𝑠 specifies a table 𝐷𝑠 that conforms to schema 𝑅𝑠 and

active domains adom𝑠 . For each attribute 𝐴 ∈ 𝑅𝑠 , adom𝑠 (𝐴) ⊆
adom(𝐴) refers to a fraction of values 𝐴 can take at state 𝑠 .

adom𝑠 (𝐴) can be set as empty set ∅, which indicates that the at-

tribute 𝐴 is not involved for training or testing𝑀 ; or a wildcard ‘_’

(‘don’t care’), which indicates that𝐴 can take any value in adom(𝐴).
Operators. A skyline data generator adopts two primitive

polynomial-time computable operators, Augment and Reduct. These
operators can be expressed by SPJ (select, project, join) queries, or

implemented as user-defined functions (UDFs).

(1) Augment has a general form of ⊕𝑐 (𝐷𝑀 , 𝐷), which augments a

dataset 𝐷𝑀 with another 𝐷 ∈ D subject to a literal 𝑐 . Here 𝑐 is a

literal in the form of𝐴 = 𝑎 (an equality condition). An augmentation

⊕𝑐 (𝐷𝑀 , 𝐷) executes the following queries: (a) augment the schema

𝑅𝑀 of 𝐷𝑀 with an attribute𝐴 from the schema 𝑅𝐷 of 𝐷 , if𝐴 ∉ 𝑅𝑀 ;

(b) augment 𝐷𝑀 with tuples from 𝐷 that satisfy constraint 𝑐; and

(c) fill the rest cells with “null” if their values are unknown.

(2) Reduct ⊖𝑐 (𝐷𝑀 ): this operator(a) selects from 𝐷𝑀 the tuples

that satisfy the selection condition posed by the literal 𝐶 posed on

attribute 𝑅𝑀 .𝐴; and (b) removes all such tuples from 𝐷𝑀 . Here 𝑐

is a single literal defined on 𝑅𝑀 .𝐴 as in (1).

Transitions. A transition 𝑟 = (𝑠, 𝑜𝑝, 𝑠′) is a triple that specifies a state
𝑠 = (𝐷, 𝑅, adom𝑠 ), an operator op ∈ O over 𝑠 , and a result state
𝑠′ = (𝐷′, 𝑅′, adom′

𝑠 ), where 𝐷′
and 𝑅′ are obtained by applying op

over𝐷 and𝑅 conforming to domain constraint adom′
𝑠 , respectively.

In practice, the operators can be enriched by task-specific UDFs

that perform additional data imputation, or pruning operations, to

further improve the quality of datasets.

Running. A configuration of T , denoted as 𝐶 = (𝑠𝑀 ,O, 𝑀,𝑇 , E),
initializes a start state 𝑠𝑀 with a dataset𝐷𝑀 , a finite set of operators

O, a fixed deterministic model𝑀 , an estimator E, and a test set 𝑇 ,

where each test 𝑡 ∈ 𝑇 has a valuated performance vector F (𝑡). Both
𝐷𝑀 and𝑇 can be empty set ∅. A running of T w.r.t. a configuration
𝐶 = (𝑠𝑀 , 𝑀,𝑇 , E) follows a general, deterministic process below.

(1) Starting from 𝑠𝑀 , and at each state 𝑠 , T iteratively applies oper-

ators from O to update a table with new attributes and tuples or

mask its tuple values. This spawns a set of child states.

(2) For each transition 𝑟 = (𝑠, op, 𝑠′) spawned from 𝑠 with a result

𝑠′ by applying op, T (a) initializes a test tuple 𝑡 (𝑀,𝐷𝑠′ ,P) if 𝑡 ∉ T
and invokes estimator E at runtime to valuate the performance

vector of 𝑡 ; or (b) if 𝑡 is already in 𝑇 , it directly loads 𝑡 .P.

Consistently, we say a state node 𝑠 ∈ V is valuated, if a corre-
sponding test 𝑡 (𝑀,𝐷𝑠 ,P) is valuated by E. We denote its evaluated

performance vector as 𝑠 .P.

The above process terminates at a set of output states S𝐹 , under

an external termination condition, or no transition can be spawned

(no new datasets can be generated with O).

The result of a running T refers to the set of corresponding

datasets D𝐹 induced from the output states S𝐹 . As each output

state 𝑠 ∈ S uniquely determines a corresponding output dataset 𝐷𝑠 ,

for simplicity, we shall use a single general term “output”, denoted

as D𝐹 , to refer to output states or datasets.

Figure 2: A skyline data generation process, with a part of
running graphs, and result datasets.

Running graph. A running of T can be naturally represented as the

dynamic generation of a running graph 𝐺T = (V, 𝛿), which is a

directed acyclic graph (DAG) with a set of state nodes V , and a set

of transition edges 𝑟 = (𝑠, 𝑜𝑝, 𝑠′). A path of length 𝑘 is a sequence

of 𝑘 transitions 𝜌 = {𝑟1, . . . 𝑟𝑘 } such that for any 𝑟𝑖 = (𝑠𝑖 , 𝑜𝑝, 𝑠𝑖+1),
𝑟𝑖+1 = (𝑠𝑖+1, 𝑜𝑝, 𝑠𝑖+2); i.e., it depicts a sequence of transitions that
converts an initial state 𝑠1 with dataset 𝐷1 to a result 𝑠𝑘 with 𝐷𝑘 .

Example 3: Following Example 1, Fig 2 shows a fraction of

a running graph with input set D= {𝐷𝑤 , 𝐷𝑏 , 𝐷𝑁 , 𝐷𝑃 } (water,

basin, nitrogen, and phosphorus tables, respectively). The aug-

mentation ⊕ uses spatial joins [38], a common query that join

tables with tuple-level spatial similarity. With a configuration 𝐶 =

(𝑠𝑀 ,RF, {𝑅𝑀𝑆𝐸, 𝑅2,𝑇𝑡𝑟𝑎𝑖𝑛}, E}) (where E is an MO-GBM estima-

tor), a running starts by joining 𝐷𝑤 and 𝐷𝑏 to get 𝐷2. 𝐷2 is then

augmented with the attribute “Phosphorus” under a literal “year
= 2013”, resulting in 𝐷3 via a path {⊕1, . . . , ⊕3}. In each step, a

test 𝑡 is initialized; and the estimator E is consulted to valuate the

performance vector of 𝑡 , and enrich 𝑇 .

Consider another path from𝐷𝑀 that results a dataset𝐷5 in Fig. 1.

It first augmentes 𝐷𝑀 to 𝐷4 with data in “Spring”. A reduction with

a condition “year<’2003” selects and removes all the tuples in 𝐷4

with historical data before 2003, which leads to dataset 𝐷5 that

retains only the data since 2003. □

4 Skyline Data Generation Problem
Given T and a configuration 𝐶 ,MODis aims find a running of T
that ideally leads to a “global” optimal dataset, where𝑀 is expected

to deliver the highest performance over all metrics. Nevertheless, a

single optimal solution may not always exist. First, two measures in

P may in nature conflict due to trade-offs (e.g., training cost versus
accuracy, precision versus recall). Moreover, the “no free lunch”

theorem [39] indicates that there may not exist a single test that

demonstrate best performance over all measures. We thus pursue

Pareto optimality forD𝐹 . We start with a dominance relation below.

Dominance. Given a data discovery system T and performance

measures P, a state 𝑠 = (𝐷𝑠 , 𝑅𝑠 , adom𝑠 ) is dominated by 𝑠′ =

(𝐷𝑠′ , 𝑅𝑠′ , adom𝑠′ ), denoted as 𝑠 ≺ 𝑠′, if there are valuated tests

𝑡 = (𝑀,𝐷𝑠 ) and 𝑡 ′ = (𝑀,𝐷𝑠′ ) in 𝑇 , such that

• for each 𝑝 ∈ P, 𝑡 ′ .𝑝 ≤ 𝑡 .𝑝; and

• there exists a measure 𝑝∗ ∈ P, such that 𝑡 ′ .𝑝∗ < 𝑡 .𝑝∗.



Generating Skyline Datasets for Data Science Models Conference’17, July 2017, Washington, DC, USA

A dataset 𝐷𝑠 is dominated by 𝐷𝑠′ , denoted as 𝐷𝑠 ≺ 𝐷𝑠′ , if 𝑠 ≺ 𝑠′.

Skyline set. Given T and a configuration 𝐶 , let D𝐹 be the set of all

the possible output datasets from a running of T , a set of datasets

D∗
𝐹
⊆ D𝐹 is a skyline set w.r.t. T and 𝐶 , if

• for any dataset 𝐷 ∈ D∗
𝐹
, and any performance measure

𝑝 ∈ P, there exists a test 𝑡 ∈ 𝑇 , such that 𝑡 .𝑝 ∈ [𝑝𝑙 , 𝑝𝑢 ];
• there is no pair {𝐷1, 𝐷2} ⊆ D∗

𝐹
such that 𝐷1 ≺ 𝐷2 or 𝐷2 ≺

𝐷1; and

• for any other 𝐷 ∈ D𝐹 \ D∗
𝐹
, and any 𝐷′ ∈ D∗

𝐹
, 𝐷 ≺ 𝐷′

.

We next formulate the skyline data generation problem.

Skyline Data Generation. Given a skyline data generator T and

its configuration 𝐶 = (𝑠𝑀 ,O, 𝑀,𝑇 , E), the skyline data generation
problem is to compute a skyline set D𝐹 in terms of T and 𝐶 .

Example 4: Revisiting prior example and consider the temporal

results D𝐹= {𝐷1, . . . , 𝐷5} with the following performance vectors

valuated by the estimator E so far:

T: (D, M, P, E) RMSE
ˆ𝑅2 𝑇𝑡𝑟𝑎𝑖𝑛

𝑡1 : (𝐷1,RF, P,MO − GBM) 0.48 0.33 0.37

𝑡2 : (𝐷2,RF, P,MO − GBM) 0.41 0.24 0.37

𝑡3 : (𝐷3,RF, P,MO − GBM) 0.26 0.15 0.37

𝑡4 : (𝐷4,RF, P,MO − GBM) 0.37 0.22 0.39

𝑡5 : (𝐷5,RF, P,MO − GBM) 0.25 0.18 0.35

Here
ˆ𝑅2 is inversed as 1-𝑅2: the smaller, the better. All the measures

are normalized in (0, 1] w.r.t. user-specified upper and lower bounds,
and the optimal values are underlined. One can verify the following

dominance relation among the datasets: (1) 𝐷1 ≺ 𝐷2 ≺ 𝐷3, and

𝐷4 ≺ 𝐷5; (2) 𝐷3 ⊀ 𝐷5 and vice versa. Hence a Skyline set D𝐹

currently contains {𝐷3, 𝐷5}, over the valuated datasets. □

We present the following hardness result.

Theorem 1: Skyline data generation is (1) NP-hard; and (2) fixed-
parameter tractable, if (a) P is fixed, and (b) |D𝐹 | is polynomially
bounded by the input size |D|. □

Proof sketch: The NP-hardness can be verified by a reduction

from the Multiobjective Shortest Path problem (MOSP). Given an

edge-weighted graph𝐺𝑤 , where each edge 𝑒𝑤 has a 𝑑-dimensional

cost vector 𝑒𝑤 .𝑐 , the cost of a path 𝜌𝑤 in 𝐺𝑤 is defined as 𝜌𝑤 .𝑐 =∑
𝑒𝑤 ∈𝜌𝑤 𝑒𝑤 .𝑐 . The dominance relation between paths is determined

by comparing their costs. MOSP is to compute a Skyline set of

paths from a start node 𝑠 to a target node 𝑡 .

Given an instance of MOSP, we construct an instance of our

problem as follows. (1) We assign an arbitrally ordered index to

the edges of 𝐺𝑤 , say 𝑒1, . . . 𝑒𝑛 . (2) We initialize a configuration T
as follows. (a) 𝑠𝑀 has a single dataset 𝐷0, where for each edge 𝑒𝑖
= (𝑣, 𝑣 ′), there is a distinct tuple 𝑡𝑖 ∈ 𝐷0. (b) O contains a set of

reduction operators, where each operator 𝑜𝑖 removes tuple 𝑡𝑖 from

𝐷0, and incurs a pre-defined performance measure 𝑒𝑖 .𝑐 . (c)𝑀 maps

each tuple 𝑡𝑖 in𝐷0 to a fixed embedding in R𝑑 . (d) The test set𝑇 is ∅.
We enforce the running graph of T to be the input 𝐺𝑤 , by setting

the initial state as 𝑠 with associated dataset𝐷0, a unique termination

state as the node 𝑡 , and the applicable transitions as the edges in

𝐺𝑤 . One can verify that a solution ofMOSP is a Pareto set of paths

from 𝑠 to 𝑡 , each results in a dataset by sequentially applying the

reduction operators following the edges of the path. This yields a

set of datasets that constitutes a corresponding skyline set D𝐹 as a

solution for our problem. AsMOSP is shown to be NP-hard [16, 37],

the hardness of skyline data generation follows.

To see the fixed-parameter tractability, we outline an exact algo-

rithm. (1) The algorithm exhausts the runnings of a skyline genera-

tor T , and invokes a PTIME inference process of the model𝑀 and

valuate at most 𝑁 ≤ |D𝐹 | possible states (datasets). (2) It invokes
a multi-objective optimizer such as Kung’s algorithm [24]. This

incurs𝑂 (𝑁 log𝑁 ) | P |−2
valuations when |P | ≥ 4, or𝑂 (𝑁 (log𝑁 ))

if |P | < 4. As 𝑁 ≤ |D𝐹 |, and |D𝐹 | is in 𝑂 ( |𝐷 |), and 𝑃 is a fixed

constant, the overall cost is in PTIME (see [43] for details). □

While the above exact algorithm is able to compute a skyline

dataset, it remains infeasible even when enlisting 𝑁 states as a

“once-for-all” cost is affordable. Moreover, a solution may contain

an excessive number of datasets to be inspected. We next present

three feasible algorithms, that generate datasets that approximate

skyline sets with bounded size and quality guarantees.

5 Computing Skyline Sets
5.1 Approximating Skyline Sets
We next present our first algorithm that generates a size-bounded

set, which approximates a Skyline set in D𝐹 . To characterize the

approximation quality, we introduce a notion of 𝜖-skyline set.

𝜖-Skyline set. Given a data discovery system T with a configura-

tion 𝐶 , Let DS be a set of 𝑁 valuated datasets in the running of T .

Given a pair of datasets (𝐷,𝐷′) from DS , and a constant 𝜖 > 0, we

say 𝐷′ 𝜖-dominates 𝐷 , denoted as 𝐷′ ⪰𝜖 𝐷 , if for the corresponding

tests 𝑡 = (𝑀,𝐷) and 𝑡 ′ = (𝑀,𝐷′),
• 𝑡 ′ .𝑝 ≤ (1 + 𝜖)𝑡 .𝑝 for each 𝑝 ∈ P, and

• there exists a measure 𝑝∗ ∈ P, such that 𝑡 ′ .𝑝∗ ≤ 𝑡 .𝑝∗.

In particular, we call 𝑝∗ a decisive measure. Note that 𝑝∗ can be

any 𝑝 ∈ P and may not be fixed.

A set of datasets D𝜖 ⊆ DS is an 𝜖-Skyline set of DS , if

• for any dataset 𝐷 ∈ D𝜖 , and any performance measure

𝑝 ∈ P, there exists a corresponding test 𝑡 ∈ 𝑇 , such that

𝑡 .𝑝 ∈ [𝑝𝑙 , 𝑝𝑢 ]; and
• for every dataset 𝐷′ ∈ DS , there exists a dataset 𝐷 ∈ D𝜖

such that 𝐷 ⪰𝜖 𝐷′
.

(𝑁, 𝜖)-approximation. We say an algorithm is an (𝑁, 𝜖)-
approximation for MODis, if it satisfies the following:

• it explores and valuates at most 𝑁 states;

• for any constant 𝜖 > 0, the system correctly outputs an

𝜖-Skyline set, as an approximation of a Skyline set defined

over 𝑁 valuated states; and
• the time cost is polynomial determined by |D|, 𝑁 , and

1

𝜖 .

Below we present our main result.

Theorem 2: Given datasets D, configuration 𝐶 , and a num-
ber 𝑁 , there exists an (𝑁, 𝜖)-approximation for MODis in

𝑂

(
min(𝑁 |𝑅𝑢 |

𝑢 , 𝑁 ) ·
((

log(𝑝𝑚 )
𝜖

) | P |−1
+ 𝐼

))
time, where |𝑅𝑢 | is the

size of the universal schema,𝑁𝑢 = |𝑅𝑢 |+ |adom𝑚 | (adom𝑚 the largest
active domain), 𝑝𝑚 = max

𝑝𝑢
𝑝𝑙

as the measure 𝑝 ranges over P; and 𝐼
is the unit valuation cost per test. □



Conference’17, July 2017, Washington, DC, USA Mengying Wang, Hanchao Ma, Yiyang Bian, Yangxin Fan, and Yinghui Wu

Algorithm 1 :ApxMODis

1: Input: Configuration 𝐶 = (𝑠𝑈 ,O, 𝑀,𝑇 , E), a number 𝑁 ,

2: a constant 𝜖 > 0, a decisive measure 𝑝𝑑 ; user-specified upper

bound 𝑝𝑢 for 𝑝 ∈ P;

3: Output: 𝜖-Skyline set D𝐹 .

4: Queue 𝑄 := ∅, integer 𝑖 := 0, 𝑄 .enqueue((𝑠𝑈 , 0));

5: while 𝑄 ≠ ∅ and number of valuated states < 𝑁 do
6: (𝑠 , i) := 𝑄 .dequeue(); D𝐹

𝑖+1
:= D𝐹

𝑖
;

7: for each (𝑠′, 𝐷𝑠′ ) ∈ OpGen (𝑠) do
8: 𝑄 .enqueue((𝑠′, i + 1));

9: D𝐹
𝑖+1

:= UPareto (𝑠′, D𝐹
𝑖+1

, 𝜖);

10: return D𝐹

11: procedure OpGen(s)
12: set 𝑄 ′

:= ∅;
13: for each entry 𝑙 ∈ 𝑠 .𝐿 do
14: if 𝑙 = 1 then
15: 𝑙 := 0;

16: create a new state 𝑠′; 𝑠′ .𝐿 := 𝑠 .𝐿;

17: generate dataset 𝐷𝑠′ accordingly;

18: 𝑄 ′
.append((𝑠′, 𝐷𝑠′ ));

19: return 𝑄 ′

20: procedure UPareto(𝑠′, D𝐹
𝑖+1

, 𝜖)

21: update 𝑠′ .P with estimator E;
22: for each 𝑝 ∈ P do
23: if 𝑠′ .P(𝑝) > 𝑝𝑢 then return D𝐹

𝑖+1
;

24: update pos(𝑠′) with Equation (1);

25: retrieve state 𝑠′′ where pos(𝑠′′) = pos(𝑠′);
26: if no such 𝑠′′ exists then
27: D𝐹

𝑖+1
:= D𝐹

𝑖+1 ∪ {𝐷′
𝑠 };

28: else if 𝑠′ .P(𝑝𝑑 ) < 𝑠′′ .P(𝑝𝑑 ) then
29: D𝐹

𝑖+1
:= D𝐹

𝑖+1 \ {𝐷𝑠′′ } ∪ {𝐷𝑠′ };
30: return D𝐹

𝑖+1

Figure 3: ApxMODis: Approximating Skyline sets

Remarks. The above result captures a relative guarantee w.r.t. 𝜖
and 𝑁 . When 𝑁 = D𝐹 , an (𝑁, 𝜖)-approximation ensures to output

a 𝜖-Skyline set. The paradigm is feasible as one can explicitly trade

the ‘closeness’ of the output to a Skyline set with affordable time

cost, by explicitly tuning 𝜖 and 𝑁 . Moreover, the worst-case factor

|adom𝑚 | can also be “tightened” by a bound determined by the

value constraints posed by the literals. For example, an attribute

𝐴 may contribute up to two necessary values in the search if the

literals involving 𝐴 only enforce two equality conditions “A=2” and

“A=5”, regardless of how large |adom(𝐴) | is (see Sections 3 and 6).

5.2 Approximation Algorithm
As a constructive proof of Theorem 2, we next present an (𝑁, 𝜖)-
approximation algorithm, denoted as ApxMODis.
“Reduce-from-Universal”. Algorithm ApxMODis simulates the

running ofT from a start state 𝑠𝑈 . The start state is initializedwith a

“universal” dataset 𝐷𝑈 , which carries the universal schema 𝑅𝑈 , and

is populated by joining all the tables (with outer join to preserve

all the values besides common attributes, by default). This is to

enforce the search from a set of rows that preserve all the attribute

values as much as possible to maximize the chance of sequential

applications of reduction only. It transforms state dominance into

a “path dominance” counterpart. For a transition edge (𝑠, ⊖, 𝑠′), a
weight is assigned to quantify the gap between the estimated model

performance over datasets 𝐷𝑠 and its “reduced” counterpart 𝐷′
𝑠 at

runtime. The “length” of a path from 𝑠𝑈 to 𝑠 aggregates the edge

weights towards the estimated performance of its result.

Advantage. We justify the “reduce-from-universal” strategy in the

following context. (1) As the measures are to be minimized, we can

extend “shortest” paths by prioritizing the valuation of datasets

towards user-defined upper bounds with early pruning, to avoid

unnecessary reduction. (2) Starting from a universal dataset allows

early exploration of “dense” datasets, over which the model tends

to have higher accuracy and generality in practice.

We next present the details of our algorithm.

Auxiliary structure. ApxMODis follows a dynamic levelwise state

generation and valuation process, which yields a running graph

𝐺T with up to 𝑁 nodes. It maintains the following.

(1) 𝑄 is a queue that maintains the dynamically generated and

valuated state nodes. Each entry of 𝑄 is a pair (𝑠, 𝑖) that records a
state and the level it resides.

(2) D𝐹 is a list of datasets. D𝑖
𝐹
specifies the datasets processed at

level 𝑖 . Each state node 𝑠 is associate with a bitmap 𝐿 to encode if

its schema 𝑠 .𝑅𝑠 contains an attribute 𝐴 in 𝐷𝑈 , and if 𝐷𝑠 contains

a value from its active domain adom(𝐴). The map is consulted to

assert the applicability of reduct operators at runtime.

(3) Each state 𝑠 is associated with a position 𝑝𝑜𝑠 (𝑠) in a discretized
|P − 1|-ary space, which is defined as

pos(𝑠 ) =
[⌊
log

1+𝜖
𝑠.P(𝑝1 )

𝑝𝑙1

⌋
, . . . ,

⌊
log

1+𝜖
𝑠.P(𝑝 |P |−1 )

𝑝𝑙 |P |−1

⌋]
(1)

By default, we set the last measure in P as a decisive measure.

We remark that one can choose any measure as decisive measure,

and our results carry over.

Algorithm. The algorithm ApxMODis is illustrated in Fig. 3. It

initializes a queue 𝑄 with a start state 𝑠𝑈 , and set a position to

𝑠𝑈 (line 4). In lines 5 to 9, it update the Skyline set D𝐹 for each

level iteratively. At level 𝑑 , for each state 𝑠 ∈ 𝑄 , procedure OpGen
(line 12 to 19) explores all one-flip transitions in 𝑠 .𝐿 and generates

a set with applicable reduct operators. ApxMODis enqueue new
states and update the Skyline set D𝐹

𝑑+1
at next level accordingly

by invoking Procedure UPareto. This process terminations until 𝑁

states are valuated, or no new state can be generated.

Procedure UPareto. Given a new state 𝑠′, procedure UPareto de-
termines if 𝑠′ should be included in the current Skyline set. (1) It

updates 𝑠′ .P by consulting the estimator E (line 1), and decide an

early skipping if its performance fails to satisfy the upperbound

𝑝𝑢 for some measure 𝑝 ∈ P. (2) Otherwise, UPareto updates the

position of state 𝑠′, and decides if 𝑠′ “replaces” a valuated state 𝑠′′ at
the same position due to (1 + 𝜖)-dominance (lines 6-9). The Skyline

set at current level is updated accordingly with dataset 𝐷𝑠′ .

Example 5: Fig. 4 illustrates data discovery of ApxMODis with
𝑁=5 and 𝜖=0.3, over a table set D = {𝐷1, . . . , 𝐷3} and measures P



Generating Skyline Datasets for Data Science Models Conference’17, July 2017, Washington, DC, USA

Figure 4: “Reduct-from-Universal”: an illustration of two-
level computation. It performs multiple level-wise spawns
and updates the 𝜖-Skyline set.
= < 𝑝1, 𝑝2 >. The operator set 𝑂 contains four reduct operators

{⊖1, . . . ⊖4}. (1) It first constructs a universal dataset 𝐷𝑈 with uni-

versal schema 𝑅𝑈 . 𝐷𝑈 can be obtained by optimized multi-way

join [46], augmentation [28], or UDFs [8]. The bitmap 𝐷𝑈 .𝐿 is ini-

tialized accordingly. Procedure OpGen then generates applicable

reductions by “flipping” the entries in 𝐷𝑈 .𝐿. This spawns states

𝑠1 and 𝑠2 obtained by applying reduct ⊖1 and ⊖2, respectively It

then consults the estimator E to valuate model performances, and

identified that 𝐷1 ⪰̸0.3 𝐷2 and vice versa. Thus ApxMODis sets the
current 0.3-Skyline set as {𝐷1, 𝐷2}.

ApxMODis next spawns states with applicable reductions ⊖3

and ⊖4, extending 𝜌1 that leads to 𝑠1, and 𝜌2 that leads to 𝑠2, This

generates new extended paths 𝜌3 and 𝜌4 with results 𝐷3 and 𝐷4,

respectively. It verfies thatD3 ⪰0.3 𝐷1, but𝐷2 ⪰0.3 𝐷4; and𝐷2 ⪰̸0.3
𝐷3 and vice versa. This yields an updated 0.3-Skyline set {𝐷2, 𝐷3},
after valuating 5 states. □

Correctness & Approximability. ApxMODis terminates as it

spawns 𝑁 nodes with at most |𝑅𝑈 | |adom𝑚 | distinct reduction,
where |adom𝑚 | refers to the size of the largest active domain.

For approximability, we present the result below.

Lemma 3: For any constant 𝜖 , ApxMODis correctly computes an
𝜖-Skyline set D𝐹 as an approximated Skyline set defined on the 𝑁
states it valuated. □

Proof sketch: We verify the 𝜖-approximability, with a reduction

to the multi-objective shortest path problem (MOSP) [40]. Given an

edge-weighted graph𝐺𝑤 , where each edge carries a 𝑑-dimensional

attribute vector 𝑒𝑤 .𝑐 , it computes a Skyline set of paths from a start

node 𝑢. The cost of a path 𝜌𝑤 in 𝐺𝑤 is defined as 𝜌𝑤 .𝑐 =
∑
𝑒𝑤 ∈𝜌𝑤

𝑒𝑤 .𝑐 . The dominance relation between two paths is determined by

the dominance relation of their cost. Our reduction (1) constructs

𝐺𝑤 as the running graph 𝐺T with 𝑁 valuated state nodes and

spawned transition edges; and (2) for each edge (𝑠, 𝑠′), sets an edge

weight as 𝑒𝑤 = 𝑠 .P−𝑠′ .P. Given a solutionΠ𝑤 of the above instance

of MOSP, for each path 𝜌𝑤 ∈ Π, we set a corresponding path 𝜌 in

𝐺T with result dataset 𝐷 , and adds it into D𝐹 . We can verify that

Π𝑤 is an 𝜖-Skyline set of paths Π𝑤 , if and only ifD𝐹 is an 𝜖-Skyline

set ofD𝑆 that contains the datasets from the set of𝑁 valuated states

in 𝐺T . We then show that ApxMODis is an optimized process of

the algorithm in [40], which correctly computes Π𝑤 for 𝐺𝑤 . □

Time cost. Let |𝑅𝑢 | be the total number of attributes in the uni-

versal schema 𝑅𝑢 of 𝐷𝑢 , and |adom𝑚 | be the size of the largest

active domain. ApxMODis performs |𝑅𝑢 | levels of spawning, and
at each node, it spawns at most |𝑅𝑢 | + |adom𝑚 | children, given
that it “flips” one attribute for each reduction, and for each at-

tribute, at most one domain value to mask. Let 𝑁𝑢 be |𝑅𝑢 |+|adom𝑚 |.
Thus, ApxMODis valuates at most min(𝑁 |𝑅𝑢 |

𝑢 , 𝑁 ) nodes (datasets),
taking 𝐼 · min(𝑁 |𝑅𝑢 |

𝑢 , 𝑁 ) time, where 𝐼 refers to a polynomial

time valuation cost of E per test. For each node, it then takes

at most

∏ | P |−1
𝑖=1

( ⌊
log

1+𝜖
𝑝𝑢𝑖
𝑝𝑙𝑖

⌋
+ 1

)
) time to update the 𝜖-Skyline

set. Given 𝜖 is small, log(1 + 𝜖) ≈ 𝜖 , and the total cost is in

𝑂

(
min(𝑁 |𝑅𝑢 |

𝑢 , 𝑁 ) ·
((

log(𝑝𝑚 )
𝜖

) | P |−1
+ 𝐼

))
time. Given |𝑅𝑢 | and |P |

are small constants, the cost is polynomial in the input size |𝐷𝑢 |,
𝑁 and

1

𝜖 . Theorem 2 thus follows.

An FPTAS case. We next present a case when ApxMODis ensures
a stronger optimality guarantee. We say an (𝑁, 𝜖)-approximation is

a fully polynomial time approximation (FPTAS) for MODis, if (1) it
computes an 𝜖-Skyline set for D𝑆 , where D𝑆 refers to all possible

datasets that can be generated from 𝐷𝑈 , and (2) it runs in time

polynomial in the size of |𝐷𝑈 | and 1

𝜖 .

Lemma 4: Given a skyline dataset generator T with configuration𝐶 ,
if |D𝑆 | has a size that is polynomially bounded in 𝑂 (𝑓 ( |𝐷𝑈 |)), then
ApxMODis is an FPTAS for MODis. □

Proof sketch: We show this by a reduction fromMODis toMOSP,
similarly as in the approximability analysis. MOSP is known to

have a fully polynomial time approximable (FPTAS) in terms of 𝜖-

dominance. We set ApxMODis to run as a ( |D𝑆 |, 𝜖)-approximation,

which is a simplified implementation of an FPTAS in [40] with

multiple rounds of “replacement” strategy following path domi-

nance. As |D𝑆 | is bounded by a polynomial of the input size |𝐷𝑈 |,
it approximates a Skyline set for all datasets in PTME. □

The size bound of D𝑆 is pragmatic and practical due to that the

attributes often bear active domains that are much smaller than

dataset size. Indeed, data science applications typically consider

data with values under task-specific constraints. These suggest

practical application of ApxMODis with affordable setting of 𝑁

and 𝜖 . We present the detailed analysis in [43].

5.3 Bi-Directional Skyline Set Generation
Given our cost analysis, for skyline data generation with larger

(more “tolerate”) ranges (𝑝𝑙 , 𝑝𝑢 ) and larger |D|, ApxMODis may

still need to valuate a large number of datasets. To further reduce

valuation cost, we introduce BiMODis, its bi-directional variant.
Our idea is to interact both augment and reduct operators, with a

“forward” search from universal dataset, and a “backward” coun-

terpart from a single dataset in D. We also introduce a pruning

strategy based on an early detection of dominance relation.

Algorithm. Algorithm BiMODis, as shown in Fig. 5, has the fol-

lowing steps. (1) Initialization (lines 3). It first invokes a proce-

dure BackSt to initialize a back-end start state node 𝑠𝑏 . Two queues



Conference’17, July 2017, Washington, DC, USA Mengying Wang, Hanchao Ma, Yiyang Bian, Yangxin Fan, and Yinghui Wu

Algorithm 2 :BiMODis

1: Input: Configuration 𝐶 = (𝑠𝑈 ,O, 𝑀,𝑇 , E), a constant 𝜖 > 0;

2: Output: 𝜖-Skyline set D𝐹 .

3: set 𝑠𝑏 = BackSt(𝑠𝑈 ); queue 𝑄 𝑓 := {(𝑠𝑈 , 0)}, 𝑄𝑏 := {(𝑠𝑏 , 0)};
integer 𝑖 := 0;

4: while 𝑄 𝑓 ≠ ∅, 𝑄𝑏 ≠ ∅ and 𝑄 𝑓 ∩𝑄𝑏 = ∅ do
5: (𝑠′, 𝑖) = 𝑄 𝑓 .dequeue(); ⊲ Forward Serach

6: (𝑠′′, 𝑖) = 𝑄𝑏 .dequeue(); ⊲ Backward Serach

7: D𝐹
𝑖+1 = D𝐹

𝑖
;

8: for all 𝑠 𝑓 ∈ OpGen (𝑠′) and 𝑠𝑏 ∈ OpGen (𝑠′′) do
9: D𝐹

𝑖+1
= UPareto (𝑠 𝑓 , D𝐹

𝑖+1
, D𝐹

𝑖
, 𝜖);

10: D𝐹
𝑖+1

= UPareto (𝑠𝑏 , D𝐹
𝑖+1

, D𝐹
𝑖
, 𝜖);

11: if canPrune(𝑠 𝑓 , 𝑠𝑏 ) then
12: prune (C, 𝑠 𝑓 , 𝑠𝑏 );
13: 𝑄 𝑓 .enqueue((𝑠

𝑓
, 𝑖 + 1)), 𝑄𝑏 .enqueue((𝑠

𝑏
, 𝑖 + 1));

14: return D𝐹

Figure 5: BiMODis: Bi-directional Search

𝑄 𝑓 and 𝑄𝑏 are initialized, seeded with start state 𝑠𝑈 for forward

search, and a back state 𝑠𝑏 for backward search, respectively. They

serve as the forward and backward frontiers, respectively. (2) Bi-
directional Search (lines 4-13). BiMODis conducts an exploration

from both directions, controlled by 𝑄 𝑓 for forward search, and

𝑄𝑏 for backward search. Similar to ApxMODis, a Skyline set D𝐹

is maintained in a levelwise manner. The difference is that it in-

vokes a revised procedure OpGen (with original counterpart in

ApxMODis; see Fig. 3), which generates reduct operators for the

forward search, and augment operators for the backward search.

The search process terminates when both 𝑄 𝑓 and 𝑄𝑏 are empty, or

when a path is formed, the result D𝐹 is returned.

Procedure BackSt. This procedure initializes a backend dataset 𝐷𝑏

for augmentation. This procedure can be tailored to the specific

task. For example, for a classifier𝑀 with input features and a target

attribute𝐴 to be classified, we sample a small (minimal) set of tuples

in 𝐷𝑈 to 𝐷𝑏 that covers all values of the active domain adom of 𝐴,

to ensure that no classes will be “missed” in the dataset 𝐷𝑏 . Other

task-specific strategies can be applied to initialize 𝐷𝑏 .

To reduce the valuation cost, BiMODis leverages correlation
analysis over historical performance𝑇 , to assert “non-𝜖-dominance”

early, without a full valuation of their measures P.

Correlation-Based Pruning. At runtime, BiMODis dynamically

maintains a correlation graph 𝐺C , where each node represents

a measure in P, and there is an edge (𝑝𝑖 , 𝑝 𝑗 ) in 𝐺C if 𝑝𝑖 and 𝑝 𝑗
are strongly correlated, with an associated weight |corr(𝑝𝑖 , 𝑝 𝑗 ) | [47].
Here we say twomeasures are strongly correlated, if their Spearman

correlation coefficient corr(𝑝𝑖 , 𝑝 𝑗 ) ≥ 𝜃 , given their value distribu-

tion in the current set of tests𝑇 , for a user-defined threshold 𝜃 .𝐺C
is dynamically updated, as more valuated tests are added to 𝑇 .

Parameterized Dominance. During the runtime, BiMODis also “pa-

rameterize” any unvaluated measures in the performance vector

𝑠 .P of a state 𝑠 with a potential range [𝑝𝑙 , 𝑝𝑢 ] ⊆ [𝑝𝑙 , 𝑝𝑢 ]. This
range is derived from the valuated measures that are most strongly

correlated, by consulting 𝐺C and test sets 𝑇 . The entire vector 𝑠 .P

is incrementally updated, for each 𝑝 ∈ P, by setting (1) 𝑠 .P(𝑝) as
𝑡 .𝑝 (valuated), if there is a corresponding test 𝑡 = (𝑀,𝐷𝑠 ) ∈ 𝑇 with

𝑡 .𝑝 valuated; or (2) 𝑠 .P(𝑝) as a variable with an estimated range

[𝑠 .𝑝𝑙 , 𝑠 .𝑝𝑢 ], if no test over 𝑝 of 𝐷𝑠 is valuated.

A state 𝑠 is parameterized 𝜖-dominated by another state 𝑠′, de-
noted as 𝑠′ ≾𝜖 𝑠 , if for each 𝑝 ∈ P, (1) 𝑠′ .P(𝑝) ≤ (1 + 𝜖)𝑠 .P(𝑝), if
both are valuated; (2) 𝑠′ .𝑝𝑢 ≤ (1 + 𝜖)𝑠 .𝑝𝑙 , if neither is valuated; or
(3) 𝑠′ .P(𝑝) ≤ (1 + 𝜖)𝑠 .𝑝𝑙 (resp. 𝑠′ .𝑝𝑢 ≤ (1 + 𝜖)𝑠 .P(𝑝)), if 𝑠′ .P(𝑝)
(resp. 𝑠 .P(𝑝)) is valuated but 𝑠 .P(𝑝) (resp. 𝑠′ .P(𝑝)) is not.

Based on the above construction, BiMODis monitors a mono-

tonicity condition as follows.

Monotonicity Condition. Given the current test set𝑇 , we say a state

𝑠 (resp. 𝑠′) with a performance measure 𝑝 at a path 𝜌 has a mono-
tonicity property, if for any state 𝑠′′ reachable from 𝑠 (resp. can

reach 𝑠′) via 𝜌 , 𝑠 .𝑝𝑢 <
𝑠′′ .𝑝𝑙
1+𝜖 (resp. 𝑠′ .𝑝𝑢 <

𝑠′′ .𝑝𝑙
1+𝜖 ).

Given two states 𝑠 and 𝑠′, where 𝑠′ ≾𝜖 𝑠 , a state 𝑠′′ on a path 𝜌

from 𝑠 or to 𝑠′ can be pruned by Correlation-based Pruning, if for

every 𝑝 ∈ P, 𝑠′′ has 𝑝 at 𝜌 with a monotonicity property w.r.t. 𝑠
(resp. 𝑠′). We present the following pruning rule.

Lemma 5: Let 𝑠 ∈ 𝑄 𝑓 and 𝑠′ ∈ 𝑄𝑏 . If 𝑠′ ≾𝜖 𝑠 , then for any state node
𝑠′′ on a path from 𝑠 or to 𝑠′ that can be pruned by Correlation-Based
Pruning, 𝐷𝑠′′ is not in any 𝜖-Skyline set of the datasets that can be
generated from valuated states. □

Procedures canPrune and prune (lines 11-12; omitted) asserts the

Correlation-Based Pruning condition, and perform the maintenance

of𝐺C ,𝑇 and other auxiliary structures, respectively. The above rule

is checkable in PTIME w.r.t. input size |D𝑆 |. When |D𝑆 | is large,
one can generate a path with its states unevaluated, and check

at runtime if the condition holds between evaluated states in the

forward and backward frontier. We present the details in [43].

Time Cost. BiMODis takes the same time complexity as

ApxMODis. The (𝑁, 𝜖)-approximation holds for BiMODis given
that it correctly updates the 𝜖-Skyline set by definition. Our ex-

perimental study verifies that it is much faster in practice and

particularly suitable for larger 𝜖 or search spaces (represented by

maximum path length). It also scales more efficiently for large

datasets (see Exp-3 in Section 6).

5.4 Diversified Skyline Dataset Generation
A Skyline dataset may still contain data that largely overlap or are

similar, hence leading to bias and reducing the generality of the

model if adopted. This may occur due to skewed value distribution

in the active domains, common attributes, over specific performance

metrics in the skyline data generation process. It is often desirable

to investigate a diversified variant of skyline set generation to

generate diversified datasets to mitigate such bias [23, 30].

Given T and a configuration 𝐶 , a set of datasets D, constants

𝑁 , 𝜖 and 𝑘 , the diversified skyline data generation is to compute a

set D∗
𝐹
of at most 𝑘 tables, such that (1) D∗

𝐹
is an 𝜖-Skyline set of

𝑁 valuated states by an (𝑁, 𝜖)-approximation of MODis, and (2)

among all 𝜖-Skyline sets over 𝑁 states valuated in (1), it maximizes

a diversification score defined as:

div(D𝐹 ) =
𝑘−1∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

dis(𝐷𝑖 , 𝐷 𝑗 ) (2)



Generating Skyline Datasets for Data Science Models Conference’17, July 2017, Washington, DC, USA

Algorithm 3 :Diversification step at level 𝑖

1: Input: 𝜖-Skyline set D𝐹
𝑖
(from UPareto), integer 𝑘 ;

2: Output: a diversified 𝑘-subset of D𝐹
𝑖
(to be passed to level

𝑖 + 1).

3: if |D𝐹
𝑖 | ≤ 𝑘 then return D𝐹

𝑖

4: initialize D𝑃
𝐹
with 𝑘 random dataset in D𝐹

𝑖
;

5: score := 𝑑𝑖𝑣 (D𝑃
𝐹
);

6: for all 𝐷 ∈ D𝑃
𝐹
do

7: for all 𝐷′ ∈ D𝐹
𝑖 do

8: if 𝐷′ ∈ D𝑃
𝐹
then Continue;

9: D𝑃 ′
𝐹

:= (D𝑃
𝐹
\ {𝐷}) ∪ {𝐷′};

10: score’ := 𝑑𝑖𝑣 (D𝑃 ′
𝐹
)

11: if score’ > score then
12: D𝑃

𝐹
:= D𝑃 ′

𝐹
, score := score’;

13: return D𝑃
𝐹

Figure 6: Level-wise diversification of DivMODis
where a distance function dis quantifies the difference of datasets
in terms of both value distributions and estimated performance,

and is defined as:

dis(𝐷𝑖 , 𝐷 𝑗 ) = 𝛼
1 − cos(𝑠𝑖 .𝐿, 𝑠 𝑗 .𝐿)

2

+ (1 − 𝛼)
euc(𝑡𝑖 .P, 𝑡 𝑗 .P)

eucm
We adopt Cosine similarity cos and Euclid Distance (euc). The latter
is normalized by the maximum Euclid Distance 𝑒𝑢𝑐𝑚 among the

historical performances in 𝑇 .

We next outline an algorithm, denoted as DivMODis, that ex-
tends an (𝑁, 𝜖)-approximation to computes an a diversified 𝜖-

Skyline set D𝐹 of at most 𝑘 datasets.

Algorithm. DivMODis revises MODis by incrementally diversify

an input 𝜖-Skyline set D𝐹
𝑖
at level 𝑖 (partially shown in Fig.6). It

derives D𝑃
𝐹
by a greedy selection and replace strategy as follows.

(1) It initializes D𝑃
𝐹
as a random 𝑘-set from D𝐹

𝑖
, and updates D𝑃

𝐹
by incrementally replacing tables with the highest marginal gain in

diversification, hence an improved 𝑑𝑖𝑣 (D𝑃
𝐹
). (2) D𝑃

𝐹
is passed to be

processed at level 𝑖 + 1, upon the arrival of new states. DivMODis
returns the diversified set D𝐹 , following the same termination

condition as in ApxMODis.
We show that the diversified MODis can be approximated, for a

submodular diversification function div. Our result holds for the
specification of div in Equation 2.

Lemma 6: Given 𝑁 and 𝜖 , DivMODis achieves a 1

4
approximation

for diversified MODis, i.e., (1) it correctly computes a 𝜖-Skyline set
𝐷𝑃
𝐹
over 𝑁 valuated datasets, and (2) div(𝐷𝑃

𝐹
) ≥ 1

4
div(D∗

F). □

Proof sketch: We show an induction on the levels. (1) We verify

the guarantee at a single level, by constructing an approximation

preserving reduction to the stream submodular maximization prob-

lem [3]. Given a stream 𝐸 = {𝑒0, . . . 𝑒𝑚}, an integer 𝑘 , and a sub-

modular diversification function 𝑓 , it computes a 𝑘-set of elements

𝑆 that can maximize 𝑓 (𝑆). Our reduction constructs a stream of

datasets D𝑆 following the level-wise generation. We show that the

function div is a submodular function. (2) By integrating a greedy

selection and replacement policy, DivMODis keeps a 𝑘-set with

Dataset Sets # tables # Columns # Rows

Kaggle 1943 33573 7317K

OpenData 2457 71416 33296K

HF 255 1395 10207K

Table 2: Characteristics of Datasets

the most diverse and representative datasets to mitigate the biases

in the Skyline set. DivMODis achieves a 1

4
-approximation of an

𝜖-Skyline set with maximized diversity at every level 𝑖 . □

Analysis. DivMODis incurs an overhead to update the diversified

𝑘-set. AsMODis valuates up tomin(𝑁 |𝑅𝑢 |
𝑢 , 𝑁 ) nodes (datasets), the

total additional overhead is in𝑂 (min(𝑁 |𝑅𝑢 |
𝑢 , 𝑁 ) · 𝑘 ·𝑇S), where𝑇S

refers to the unit valuation cost for a single table, which is in PTIME.

As both 𝑘 and 𝑇S are relatively small, the practical overhead for

DivMODis remains small (see Sec. 6).

Remarks. Alternatives that solve multi-objective optimization may

be applied, such as evolutionary algorithms such as NSGA-II [5],

or reinforcement-learning based methods [29]. The former rely

on costly stochastic processes (e.g., mutation and crossover) and

may require extensive parameter tuning. The latter are effective for

general state exploration but require high-quality training samples

and may not converge over “conflicting” measures. In contrast,

MODis is training and tuning free. Our experiments verified that

ApxMODis provides early generation of high-quality datasets from

a few large input datasets, due to “reduce-from-Universal” strategy,

BiMODis enhances efficiency through bidirectional exploration and

pruning, hence benefits for larger number of small-scale datasets,

and DivMODis benefits most for datasets with skewed distribution.

6 Experiment Study
We next experimentally verify the efficiency and effectiveness of

our algorithms. We aim to answer three questions: RQ1: How well

can our algorithms improve the performance of models in multiple

measures? RQ2: What is the impact of generation settings, such

as data size? RQ3: How fast can they generate skyline sets, and

how scalable are they? We also illustrate the applications of our

approaches with case studies
1
.

Datasets. We use three sets of tabular datasets: kaggle [21],

OpenData [1], and HF [19] (summarized in Table 2).

Tasks and Models. A set of tasks are assigned for evaluation.

We trained: (1) a Gradient Boosting model (GBmovie) to predict

movie grosses using Kaggle for Task𝑇1; (2) a Random Forest model

(RFhouse) to classify house prices using OpenData with the same

settings in [14] for Task 𝑇2; and (3) a Logistic Regression model

(LRavocado) to predict Avocado prices using HF for Task 𝑇3. (4)

a LightGBM model (LGCmental) [22] to classify mental health

status using Kaggle for Task 𝑇4. We also introduced task 𝑇5, a

link regression task for recommendation. This task takes as input

a bipartite graph between users and products, and links indicate

their interaction. A LightGCN [17] (LGRmodel), a variant of graph
neural networks (GNN) optimized for fast graph learning, is trained

to predict top-𝑘 missing edges in an input bipartite graph to suggest

products to users. A set of 1873 bipartite graphs is constructed from

Kaggle for𝑇5. The “augment” (resp. “reduct”) operators are defined

1
Our codes and datasets are available at github.com/wang-mengying/modis



Conference’17, July 2017, Washington, DC, USA Mengying Wang, Hanchao Ma, Yiyang Bian, Yangxin Fan, and Yinghui Wu

Notation Measures Used In

𝑝𝐴𝑐𝑐 Model Accuracy P1, P2, P4

𝑝𝑇𝑟 Training Time Cost P1-P4

𝑝𝐹 1 𝐹1 score P2, P4

𝑝𝐴𝑈𝐶 Area under the curve P4

𝑝𝑁𝑐 (𝑛) NDCG(@n) P5

𝑝𝑀𝐴𝐸 , 𝑝𝑀𝑆𝐸 Mean Absolute / Squared Error P3

𝑝𝑃𝑐 (𝑛) , 𝑝𝑅𝑐 (𝑛) Precision(@n), Recall(@n) P5

𝑝𝐹𝑠𝑐 Fisher Score [27] P1, P2

𝑝𝑀𝐼 Mutual Information [14, 27] P1, P2

Table 3: Performance Measures

as edge insertions (resp. edge deletions) to transform a bipartite

graph to another. Scripts are implemented with scikit-learn [34].

We use the same training scripts for each task and all methods

for a fair comparison. We assigned measures P1 through P5 for

tasks 𝑇1 to 𝑇5, respectively , as summarized in Table 3. We also

report the size of the data (𝑝𝐷𝑆𝑖𝑧𝑒 ) in terms of (total # of rows total

# of columns), excluding attributes with all cells masked.

Estimator E. We adopt MO-GBM [34] as a desired model perfor-

mance estimator. It outperforms other candidate models even with

a simple training set For example, for 𝑇1, MO-GBM performs infer-

ence for all objectives on one state in at most 0.2 seconds, with a

small MSE of 0.0003 when predicting “Accuracy”.

Algorithms. We implemented the following methods.

(1) MODis: Our multi-objective data discovery algorithms, includ-

ing ApxMODis, BiMODis, and DivMODis. We also implemented

NOBiMODis, a counterpart of BiMODiswithout correlation-based
pruning. (2)METAM [14]: a goal-oriented data discovery algorithm

that optimizes a single utility score with consecutive joins of tables.

We also implemented an extension calledMETAM-MO, by incor-

porating multiple measures into a single linear weighted utility

function. (3) Starmie [12]: a data discovery method that focuses on

table-union search and uses contrastive learning to identify joinable

tables. For METAM and Starmie, we used the code from original

papers. (4) SkSFM [34]: An automated feature selection method

in scikit-learn’s SelectFromModel, which recommends important

features with a built-in estimator. (5) H2O [15]: an AutoML plat-

form; we used its feature selection module, which fits features and

predictors into a linear model.

Construction of𝐷𝑈 andOperators. To prepare universal datasets
𝐷𝑈 forMODis, we preprocess Kaggle, OpenData and HF into join-
able tables and construct 𝐷𝑈 with multi-way joins. This results in

𝐷𝑈 datasets with a size (in terms of # of columns and # of rows):

(12, 3732), (27, 1178), (13, 18249) and (20, 140700), for tasks𝑇1 to𝑇4,
respectively. Specifically, we applied 𝑘-means clustering over the

active domain of each attribute (with a maximum 𝑘 set as 30), and

derived equality literals, one for each cluster. We then compressed

the input tables by replacing rows into tuple clusters, reducing the

number of rows. This pragmatically help us avoid starting from

large 𝐷𝑈 by only retaining the values of interests, and still yield de-

sired skyline datasets. For 𝑇5, a large bipartite graph is constructed

with a size of (7925, 34) (# of edges, # of nodes’ features). The gener-
ation of graphs follows consistently with its table data counterpart,

by conveniently replacing augment and reduction to their graph

counterpart that performs link insertions and deletions.

Figure 7: Effectiveness: Multiple Measures

Evaluation metrics. We adopt the following metrics to quantify

the effectiveness of data discovery approaches. Denote 𝐷𝑀 as an

initial dataset, andD𝑜 a set of output datasets from a data discovery

algorithm. (1) We define the relative improvement rImp(𝑝) for a
given measure 𝑝 achieved by a method as

𝑀 (𝐷𝑀 ) .𝑝
𝑀 (𝐷𝑜 ) .𝑝 . As all metrics

are normalized to be minimized, the larger rImp(𝑝) is, the better
𝐷𝑝 is in improving 𝑀 w.r.t. 𝑝 . Here 𝑀 (𝐷𝑀 ) .𝑝 and 𝑀 (𝐷𝑝 ) .𝑝 are

obtained by actual model inference test. This allows us to fairly

compare all methods in terms of the quality of data suggestion.

For efficiency, we compare the time cost of the data discovery

process upon receiving a given model or task as a “query”.

Exp-1: Effectiveness. We first evaluate MODis methods over five

tasks. Results for𝑇1 and𝑇3 are shown in Fig. 7 (the outer, the better).

While results for 𝑇2 and 𝑇4 are presented in Table 4. Results for 𝑇5
are in Table 5. We also report the model performance over the input

tables as a “yardstick” (“Original”) for all methods. As all baselines

output a single table, to compare MODis algorithms, we select the

table in the Skyline set with the best estimated 𝑝𝐴𝑐𝑐 , 𝑃𝐹1, 𝑃𝑀𝑆𝐸 ,

𝑝𝐴𝑐𝑐 and 𝑝𝑃𝑐5 for 𝑇1 to 𝑇5, respectively. As METAM optimizes a

single utility score, we choose the same measure for each task as the

utility. We apply model inference to all the output tables to report

actual performance values. We have the following observations.

(1)MODis algorithms outperform all the baselines in all tasks. As

shown in Table 4, for example, for 𝑇4, the datasets that bear best

𝑝𝐴𝑐𝑐 and the second best are returned by ApxMODis (0.9535) and
BiMODis (0.9525), respectively, and all MODis methods generated

datasets that achieve 0.87 on 𝑝𝐹1 in 𝑇2.

(2) Over the same dataset and for other measures, MODis algo-
rithms outperform the baselines in most cases. For example, in

𝑇1, the result datasets that most optimize 𝑝𝐹𝑠𝑐 and 𝑝𝑀𝐼 are ob-

tained by BiMODis and ApxMODis, respectively; also in𝑇2 and𝑇3,

NOBiMODis and BiMODis show absolute dominance in most mea-

sures. Table 5 also verifies that MODis easily generalize to suggest

graph data for GNN-based analytics, beyond tabular data.

(3) Methods with data augmentation (e.g.,METAM and Starmie)
enriches data to improve model accuracy, at a cost of training time,

while feature selection methods (e.g.,SkSFM and H2O) reduce data

at the cost of accuracy with improved training efficiency.MODis
methods are able to balance these trade-offs better by explicitly
performing multi-objective optimization. For example, 𝑝𝐴𝑐𝑐 and

𝑝𝑇𝑟𝑎𝑖𝑛 in𝑇4, The best result for training cost (0.2359s) is contributed

from SkSFM, yet at a cost of lowest model accuracy (0.8839).



Generating Skyline Datasets for Data Science Models Conference’17, July 2017, Washington, DC, USA

𝑇2: House Original METAM METAM-MO Starmie SkSFM H2O ApxMODis NOBiMODis BiMODis DivMODis
𝑝𝐹 1 0.8288 0.8510 0.8310 0.8351 0.7825 0.8333 0.9044 0.9125 0.9125 0.8732

𝑝𝐴𝑐𝑐 0.8305 0.8322 0.8333 0.8331 0.7826 0.8305 0.9050 0.9121 0.9121 0.8729

𝑝𝑇𝑟𝑎𝑖𝑛 0.2000 0.21 0.19 0.2100 0.2000 0.2000 0.1533 0.1519 0.1519 0.2128

𝑝𝐹𝑠𝑐 0.0928 0.0889 0.0894 0.0149 0.2472 0.0691 0.2268 0.2610 0.2610 0.2223

𝑝𝑀𝐼 0.126 0.1109 0.1207 0.0243 0.2970 0.1054 0.2039 0.2018 0.2018 0.3164
Output Size (1178, 27) (1178, 28) (1178, 28) (1178, 32) (1178, 4) (1178, 15) (835, 17) (797, 17) (797, 17) (1129, 5)

𝑇4: Mental Original METAM METAM-MO Starmie SkSFM H2O ApxMODis NOBiMODis BiMODis DivMODis
𝑝𝐴𝑐𝑐 0.9222 0.9468 0.9462 0.9505 0.8839 0.9236 0.9532 0.9471 0.9525 0.9471

𝑝𝑃𝑐 0.7940 0.7991 0.8070 0.8106 0.6577 0.7892 0.8577 0.8454 0.8549 0.8454

𝑝𝑅𝑐 0.7722 0.7846 0.7959 0.8030 0.7523 0.7879 0.8097 0.8092 0.8075 0.8092

𝑝𝐹 1 0.7829 0.7918 0.8014 0.8068 0.7018 0.7885 0.8330 0.8269 0.8305 0.8269

𝑝𝐴𝑈𝐶 0.9618 0.9757 0.9774 0.9784 0.9326 0.9615 0.9792 0.9755 0.9789 0.9755

𝑝𝑇𝑟𝑎𝑖𝑛 0.4098 0.3198 0.4027 0.3333 0.2359 0.2530 0.3327 0.2818 0.3201 0.2818

Output Size (10
5
, 14) (10

5
, 15) (10

5
, 15) (10

5
, 16) (10

5
8) (10

5
, 8) (128332, 16) (116048, 16) (128332, 17) (116048, 16)

Table 4: Comparison of Data Discovery Algorithms in Multi-Objective Setting (𝑇2, 𝑇4)

𝑇5: Model Original ApxMODis NOMODis BiMODis DivMODis

𝑝𝑃𝑐5 0.7200 0.8200 0.8000 0.8200 0.8000

𝑝𝑃𝑐10 0.6600 0.8100 0.8000 0.8200 0.8000

𝑝𝑅𝑐5 0.1863 0.2072 0.2022 0.2072 0.2022

𝑝𝑅𝑐10 0.3217 0.3866 0.3816 0.3977 0.3816

𝑝𝑁𝑐5 0.6923 0.7935 0.7875 0.7924 0.7875

𝑝𝑁𝑐10 0.6646 0.7976 0.7891 0.8033 0.7891

Output Size (7925, 0) (5826, 30) (1966, 6) (2869, 4) (1966, 6)

Table 5: Comparison ofMODisMethods on 𝑇5

Figure 8: Effectiveness: Impact of Factors

We also compared 𝑝𝐴𝑐𝑐 on𝑇4 with HydraGAN, a generative data

augmentation method, which achieves 0.9355with 330 rows but fell

short of data discovery methods. Increasing the number of rows fur-

ther reduced performance, reflecting the limitations of generative

approaches in this context, which cannot utilize verified external

data sources, and synthetic data often lacks inherent reliability and

contextual relevance of discovered data.

Exp-2: Impact factors. We next investigate theMODis methods

under the impact of two factors: 𝜖 and the maximum path length

(maxl), as well as the impact of 𝛼 on DivMODis.

Varying 𝜖 . Fixing maxl = 6, we varied 𝜖 from 0.5 to 0.1 for 𝑇1. As

shown in Fig. 8(a),MODis algorithms are able to improve the model

in 𝑝𝑎𝑐𝑐 better with smaller 𝜖 , as they all ensure to output a 𝜖-Skyline

set that better approximate a Skyline set when 𝜖 is set to be smaller.

In all cases, they achieve a relative improvement rImp(𝑝𝐴𝑐𝑐 ) at
least 1.07.BiMODis andNOBiMODis perform better in recognizing

better solutions from both ends in reduction and augmentation

as smaller 𝜖 is enforced. ApxMODis, with reduction only, is less

sensitive to the change of 𝜖 due to that larger 𝜖 may “trap” it to

local optimal sets from one end. Adding diversification (DivMODis)
is able to strike a balance between ApxMODis and BiMODis by
enforcing to choose difference datasets out of local optimal sets,

thus improvingApxMODis for smaller 𝜖 . We choose a smaller range

of 𝜖 for 𝑇2 in Fig. 8(c), as the variance of 𝑝𝐹1 is small. As 𝜖 varies

from 0.1 to 0.02, NOBiMODis improves F1 score from 0.84 to 0.91.

Varying maxl. Fixing 𝜖 = 0.1, we variedmaxl from 2 to 6. Fig. 8(b, d)

tells us that allMODis algorithms improve the task performance for

more rounds of processing. Specifically,BiMODis andNOBiMODis
benefit most as bi-directional search allows both to find better solu-

tion from wider search space as maxl becomes larger. ApxMODis
is less sensitive, as the reduction strategy from dense tables incurs

smaller loss in accuracy. DivMODis finds datasets that ensure best
model accuracy when maxl = 5, yet may “lose chance” to maintain

the accuracy, due to that the diversification step may update the

Skyline set with less optimal but more different counterparts in

future levels (e.g., when maxl = 6).

Varying 𝛼 in DivMODis. We demonstrate the effectiveness of

DivMODis by adjusting 𝛼 . A smaller 𝛼 prioritizes performance,

while a larger 𝛼 emphasizes content diversity, measured by ham-

ming distance. Fig. 9(a) illustrates Performance Diversity, where
smaller 𝛼 results in a wider accuracy range with a balanced and

stable distribution. Both the mean and median remain centered. As

𝛼 increases, the accuracy distribution narrows and shifts toward

higher values, reflecting the dominance of high-accuracy datasets

in the Skyline set. Fig. 9(b) verifies the impact of Content Diversity,
visualized as the percentage contribution of each adom. Larger 𝛼



Conference’17, July 2017, Washington, DC, USA Mengying Wang, Hanchao Ma, Yiyang Bian, Yangxin Fan, and Yinghui Wu

Figure 9: Impact of 𝛼 for DivMODis

Figure 10: Efficiency and Scalabilitiy

leads to more evenly distributed contributions. The standard de-

viation values above the heatmap quantify this trend, showing a

consistent decrease as 𝛼 increases, indicating improved balance.

Exp-3: Efficiency and Scalibility. We next report the the effi-

ciency of MODis algorithms for task 𝑇1 and task 𝑇3 over Kaggle
and HF, respectively, and the impact of factors 𝜖 andmaxl. We also

evaluate their scalability for tasks 𝑇1 and 𝑇5 in terms of input size.

Efficiency: Varying 𝜖 . Fixing maxl = 6 and varying 𝜖 from 0.1 to

0.5, Fig. 10 (a) verifies the following. (1) BiMODis, NOBiMODis
and DivMODis take less time as 𝜖 increases, as a larger 𝜖 provides

more chance to prune unnecessary valuations. DivMODis has a
comparable performance with NOBiMODis, as it mainly benefits

from the bi-directional strategy, which exploits early pruning and

a stream-style placement strategy. (2) As shown in Fig. 10(a), for

𝑇1, BiMODis, NOBiMODis, and DivMODis are 2.5, 2, and 2 times

faster than ApxMODis on average, respectively. ApxMODis takes
longer time to explore a larger universal table with reduct operators.

It is insensitive to 𝜖 . We observe that its search from the “data rich”

end may converge faster at high-quality 𝜖-Skyline sets.

Efficiency: Varying maxl. Fixing 𝜖 = 0.2 for task 𝑇1 and 𝜖 = 0.1 for

task 𝑇3, we varied maxl from 2 to 6, all MODis algorithms take

longer asmaxl increases, as shown in Fig. 10 (b). Indeed, largermaxl
results in more states to be valuated, and more non-𝜖-dominance

relation to be resolved. ApxMODis is sensitive to maxl due to the

rapid growth of the search space. In contrast, BiMODis mitigates

the impact with bi-directional strategy and effective pruning.

Scalability. We varied the number of total attributes |𝐴| and size

of the largest active domain |adom|. We perform 𝑘-means cluster-

ing over the tuples of the universal table with 𝑘 = |adom|, and
extended operators with range queries to control |adom|. Fig. 10 (c)
and (d) show that allMODis algorithms take more time for larger

|𝐴| and |adom|. BiMODis scales best due to bi-directional strat-

egy. DivMODis remains more efficient than ApxMODis, indicating
affordable overhead from diversification.

While our algorithms scale well with |𝐴| and |adom|, high-
dimensional datasets may present challenges due to the search

space growth. Dimensionality reduction such as PCA or feature

selection, or correlation-based pruning (to identify and eliminate

highly correlated or redundant features), can be tailored to specific

tasks to mitigate these challenges.

Exp-4: Case study. We next report two real-world case studies

to illustrate the application scenarios of MODis. (1) “Find data
with models”. A material science team trained a random forest-

based classifier to identify peaks in 2D X-ray diffraction data. They

seek more datasets to improve the model’s accuracy, training cost,
and F1 score for downstream fine-tuning. Original X-ray datasets

and models are uploaded to a crowd-sourced X-ray data platform

we deployed [44] with best performance of < 0.6435, 3.2, 0.77 >.

Within available X-ray datasets, BiMODis created three datasets

and achieved the best performance of 0.987, 2.88, and 0.91, respec-

tively. We set METAM to optimize F1-score, and achieved a perfor-

mance score of < 0.972, 3.51, 0.89 > over its output dataset. Fig. 14

illustrates such a case that is manually validated with ground-truth

from a third-party institution. (2)Generating test data for model eval-
uation. We configureMODis to generate test data for model bench-

marking, where specific performance criteria can be posed [41].

Utilizing a scientific image classifier from Kaggle, and a pool of

image feature datasets D from HF with 75 tables, 768 columns, and

over 1000 rows. We request BiMODis to generate datasets over

which the classifier demonstrates: “accuracy > 0.85” and “train-

ing cost < 30s.” BiMODis successfully generated 3 datasets to be

chosen from within 15 seconds, with performance < 0.95, 0.27 >,

< 0.94, 0.26 > and < 0.90, 0.25 >, as exemplified in Fig. 14 in [43] .

We report the details of more complementary tests and impact

of factors to MODis in appendix and [43].

7 Conclusion
We have introduced MODis, a framework that generate skyline

datasets to improve data science models on multiple performance

measures. We have formalized skyline data generation with trans-

ducers equipped with augment and reduction operators. We show

the hardness and fixed-parameter tractability of the problem. We

have introduced three algorithms that compute approximate Sky-

line sets in terms of 𝜖-Skyline set, with reduce-from-universal, bi-

directional, and diversification paradigms. Our experiments have

verified their effectiveness and efficiency. A future topic is to en-

hance MODis with query optimization techniques to scale it for

larger input with high-dimensional data. Another topic is to extend

MODis for distributed Skyline data generation.



Generating Skyline Datasets for Data Science Models Conference’17, July 2017, Washington, DC, USA

References
[1] U.S. General Services Administration. 2023. Data.gov. https://www.data.gov/

[2] Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and An-

dreas Krause. 2014. Streaming submodular maximization: Massive data summa-

rization on the fly. In Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining.

[3] Amit Chakrabarti and Sagar Kale. 2015. Submodular maximization meets stream-

ing: matchings, matroids, and more. Mathematical Programming (2015).

[4] Jan Chomicki, Paolo Ciaccia, and Niccolo’ Meneghetti. 2013. Skyline queries,

front and back. ACM SIGMOD Record 42, 3 (2013), 6–18.

[5] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A

fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation 6, 2 (2002), 182–197.

[6] Chance DeSmet and Diane Cook. 2024. HydraGAN: A Cooperative Agent Model

for Multi-Objective Data Generation. ACM Transactions on Intelligent Systems
and Technology 15, 3 (2024), 1–21.

[7] AnHai Doan, Alon Halevy, and Zachary Ives. 2012. Principles of data integration.
[8] Bin Dong, Kesheng Wu, Surendra Byna, Jialin Liu, Weijie Zhao, and Florin Rusu.

2017. ArrayUDF: User-defined scientific data analysis on arrays. In Proceedings
of the 26th International Symposium on High-Performance Parallel and Distributed
Computing. 53–64.

[9] Zahra Donyavi and Shahrokh Asadi. 2020. Diverse training dataset generation

based on amulti-objective optimization for semi-supervised classification. Pattern
Recognition 108 (2020), 107543.

[10] Iddo Drori, Yamuna Krishnamurthy, Raoni Lourenco, Remi Rampin, Kyunghyun

Cho, Claudio Silva, and Juliana Freire. 2019. Automatic machine learning by

pipeline synthesis using model-based reinforcement learning and a grammar.

arXiv preprint arXiv:1905.10345 (2019).
[11] Mahdi Esmailoghli, Christoph Schnell, Renée J Miller, and Ziawasch Abedjan.

2023. Blend: A unified data discovery system. arXiv preprint arXiv:2310.02656
(2023).

[12] Grace Fan, Jin Wang, Yuliang Li, Dan Zhang, and Renée J Miller. 2023. Semantics-

Aware Dataset Discovery from Data Lakes with Contextualized Column-Based

Representation Learning. Proceedings of the VLDB Endowment 16, 7 (2023).
[13] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and

Frank Hutter. 2018. Practical automated machine learning for the automl chal-

lenge 2018. In International Workshop on Automatic Machine Learning at ICML.
1189–1232.

[14] Sainyam Galhotra, Yue Gong, and Raul Castro Fernandez. 2023. Metam: Goal-

oriented data discovery. In 2023 IEEE 39th International Conference on Data Engi-
neering (ICDE). IEEE, 2780–2793.

[15] H2O.ai. 2022. H2O: Scalable Machine Learning Platform. https://github.com/

h2oai/h2o-3 version 3.42.0.2.

[16] Pierre Hansen. 1980. Bicriterion path problems. In Multiple Criteria Deci-
sion Making Theory and Application: Proceedings of the Third Conference Ha-
gen/Königswinter, West Germany, August 20–24, 1979. 109–127.

[17] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng

Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for

recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639–648.

[18] Zezhou Huang, Pranav Subramaniam, Raul Castro Fernandez, and Eugene Wu.

2023. Kitana: Efficient Data Augmentation Search for AutoML. arXiv preprint
arXiv:2305.10419 (2023).

[19] Hugging Face AI 2023. Hugging Face – The AI Community Building the Future.

https://huggingface.co/

[20] John T Hwang and Joaquim RRA Martins. 2018. A fast-prediction surrogate

model for large datasets. Aerospace Science and Technology 75 (2018), 74–87.

[21] Kaggle. 2023. Kaggle: Your Home for Data Science. https://www.kaggle.com/

[22] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,

Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boosting

decision tree. Advances in neural information processing systems 30 (2017).
[23] Mina Konakovic Lukovic, Yunsheng Tian, and Wojciech Matusik. 2020. Diversity-

guided multi-objective bayesian optimization with batch evaluations. Advances
in Neural Information Processing Systems 33 (2020), 17708–17720.

[24] Hsiang-Tsung Kung, Fabrizio Luccio, and Franco P Preparata. 1975. On finding

the maxima of a set of vectors. J. ACM 22, 4 (1975), 469–476.

[25] Berti-Equille Laure, Bonifati Angela, and Milo Tova. 2018. Machine learning to

data management: A round trip. In ICDE. 1735–1738.
[26] Maurizio Lenzerini. 2002. Data integration: A theoretical perspective. In PODS.
[27] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino,

Jiliang Tang, and Huan Liu. 2017. Feature selection: A data perspective. ACM
computing surveys (CSUR) 50, 6 (2017), 1–45.

[28] Yuliang Li, Xiaolan Wang, Zhengjie Miao, and Wang-Chiew Tan. 2021. Data

augmentation for ml-driven data preparation and integration. Proceedings of the
VLDB Endowment 14, 12 (2021), 3182–3185.

[29] Chunming Liu, Xin Xu, and Dewen Hu. 2014. Multiobjective reinforcement

learning: A comprehensive overview. IEEE Transactions on Systems, Man, and

Cybernetics: Systems 45, 3 (2014), 385–398.
[30] Andre KY Low, Flore Mekki-Berrada, Aleksandr Ostudin, Jiaxun Xie, Eleonore

Vissol-Gaudin, Yee-Fun Lim, Abhishek Gupta, Qianxiao Li, Yew Soon Ong, Saif A

Khan, et al. 2023. Evolution-guided Bayesian optimization for constrained multi-

objective optimization in self-driving labs. (2023).

[31] Tien-Dung Nguyen, Tomasz Maszczyk, Katarzyna Musial, Marc-André Zöller,

and Bogdan Gabrys. 2020. Avatar-machine learning pipeline evaluation using

surrogate model. In Advances in Intelligent Data Analysis XVIII: 18th International
Symposium on Intelligent Data Analysis, IDA 2020, Konstanz, Germany, April 27–29,
2020, Proceedings 18. Springer, 352–365.

[32] Xuan Vinh Nguyen, Jeffrey Chan, Simone Romano, and James Bailey. 2014. Ef-

fective global approaches for mutual information based feature selection. In

Proceedings of the 20th ACM SIGKDD international conference on Knowledge dis-
covery and data mining. 512–521.

[33] Andrei Paleyes, Raoul-Gabriel Urma, and Neil D Lawrence. 2022. Challenges

in deploying machine learning: a survey of case studies. Comput. Surveys 55, 6
(2022), 1–29.

[34] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[35] Hanchuan Peng, Fuhui Long, and Chris Ding. 2005. Feature selection based

on mutual information criteria of max-dependency, max-relevance, and min-

redundancy. IEEE Transactions on pattern analysis and machine intelligence 27, 8
(2005), 1226–1238.

[36] Yuji Roh, GeonHeo, and Steven EuijongWhang. 2019. A survey on data collection

for machine learning: a big data-ai integration perspective. IEEE Transactions on
Knowledge and Data Engineering 33, 4 (2019), 1328–1347.

[37] Paolo Serafini. 1987. Some considerations about computational complexity for

multi objective combinatorial problems. In Recent Advances and Historical De-
velopment of Vector Optimization: Proceedings of an International Conference on
Vector Optimization Held at the Technical University of Darmstadt, FRG, August
4–7, 1986. Springer, 222–232.

[38] Darius Šidlauskas and Christian S Jensen. 2014. Spatial joins in main memory:

Implementation matters! Proceedings of the VLDB Endowment 8, 1 (2014), 97–100.
[39] Tom F Sterkenburg and Peter D Grünwald. 2021. The no-free-lunch theorems of

supervised learning. Synthese 199, 3-4 (2021), 9979–10015.
[40] George Tsaggouris and Christos Zaroliagis. 2009. Multiobjective optimization:

Improved FPTAS for shortest paths and non-linear objectives with applications.

Theory of Computing Systems 45, 1 (2009), 162–186.
[41] Francesco Ventura, Zoi Kaoudi, Jorge Arnulfo Quiané-Ruiz, and Volker Markl.

2021. Expand your training limits! generating training data for ml-based data

management. In SIGMOD.
[42] Mengying Wang, Sheng Guan, Hanchao Ma, Yiyang Bian, Haolai Che, Abhishek

Daundkar, Alp Sehirlioglu, and Yinghui Wu. 2023. Selecting Top-k Data Science

Models by Example Dataset. In CIKM.

[43] Mengying Wang, Hanchao Ma, Yiyang Bian, Yangxin Fan, and Yinghui Wu. 2024.

Full Version. https://wangmengying.me/papers/modis.pdf

[44] Mengying Wang, Hanchao Ma, Abhishek Daundkar, Sheng Guan, Yiyang Bian,

Alpi Sehirlioglu, and Yinghui Wu. 2022. CRUX: crowdsourced materials science

resource and workflow exploration. In CIKM.

[45] Chengrun Yang, Jicong Fan, Ziyang Wu, and Madeleine Udell. 2020. Automl

pipeline selection: Efficiently navigating the combinatorial space. In proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data
mining. 1446–1456.

[46] Zhuoyue Zhao, Feifei Li, and Yuxi Liu. 2020. Efficient join synopsis mainte-

nance for data warehouse. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 2027–2042.

[47] JH Zheng, YN Kou, ZX Jing, and QH Wu. 2019. Towards many-objective opti-

mization: Objective analysis, multi-objective optimization and decision-making.

IEEE Access 7 (2019), 93742–93751.
[48] Patrick Ziegler and Klaus R Dittrich. 2007. Data integration—problems, ap-

proaches, and perspectives. In Conceptual modelling in information systems
engineering. Springer, 39–58.

https://www.data.gov/
https://github.com/h2oai/h2o-3
https://github.com/h2oai/h2o-3
https://huggingface.co/
https://www.kaggle.com/
https://wangmengying.me/papers/modis.pdf


Conference’17, July 2017, Washington, DC, USA Mengying Wang, Hanchao Ma, Yiyang Bian, Yangxin Fan, and Yinghui Wu

Appendix A: Algorithms and Proof
A.1 ApxMODis

Proof of Lemma 3 For any constant 𝜖 , ApxMODis correctly com-
putes an 𝜖-Skyline set Π that approximates a Skyline set defined on
the 𝑁 states it valuated.

Proof. We establish the 𝜖-approximability ofApxMODis by con-
structing a reduction fromMODis to the multi-objective shortest

path problem (MOSP) [40].

Reduction. An instance of MOSP consists of an edge-weighted

graph 𝐺𝑤 , where each edge 𝑒𝑤 is assigned a 𝑑-dimensional at-

tribute vector 𝑒𝑤 .𝑐 . The cost of a path 𝜌𝑤 in 𝐺𝑤 is defined as 𝜌𝑤 .𝑐

=

∑
𝑒𝑤 ∈𝜌𝑤 𝑒𝑤 .𝑐 . The dominance relation between two paths 𝜌𝑤

and 𝜌′𝑤 is determined by comparing their costs. Specifically, 𝜌𝑤
dominates 𝜌′𝑤 if 𝜌𝑤 has equal or lower costs than 𝜌′𝑤 in all dimen-

sions and is strictly better in at least one dimension. The objective

is to compute a Skyline set of paths from a start node 𝑢 to all other

nodes in the graph.

We construct the reduction from our problem to MOSP. (1) We

define 𝐺𝑤 as an edge weighted counterpart of a running graph

𝐺T . (a) Each vertex in 𝐺T represents a unique state 𝑠 during the

execution of ApxMODis, with each state corresponding to a specific
dataset configuration in the data discovery process. The graph 𝐺T
contains 𝑁 vertices, corresponding to the 𝑁 states that ApxMODis
has spawned and valuated. (b) Each edge (𝑠, 𝑠′) in 𝐺T represents

a transition from state 𝑠 to state 𝑠′, resulting from applying an

operation (e.g., reduction or augmentation) thatmodifies the dataset.

The edge is weighted by the difference in performance measures

in P between the two states: 𝑒𝑤 = 𝑠 .P − 𝑠′ .P. Here, 𝑠 .P and 𝑠′ .P
are the performance vectors of the states 𝑠 and 𝑠′, respectively.
The edge weight 𝑒𝑤 is a 𝑑-dimensional vector that quantifies how

the performance metrics change as a result of the transition. A

path 𝜌 ∈ 𝐺T corresponds to a sequence of transitions between

states, starting from the initial state 𝑠𝑈 . Similar to 𝜌𝑤 ∈ 𝐺𝑤 , the

cumulative cost of this path 𝜌.𝑐 is defined as the sum of the edge

weights along the path, which represents the cumulative change

in the performance measures P as the dataset evolves through

different states.

Given a solution Π𝑤 of an instance of MOSP, which is an 𝜖-

Skyline set of paths, we construct a solution for a corresponding

instance ofMODis. For each path 𝜌𝑤 ∈ Π𝑤 , we establish a corre-

sponding path 𝜌 in 𝐺T and identify the final state 𝑠 that the path

reaches. The final state 𝑠 corresponds to a specific dataset 𝐷 , which

is the result of applying the sequence of operations from 𝜌 . We

then include 𝐷 in the set D𝐹 . This forms a set of datasets as the

solution toMODis.
We next prove that Π𝑤 is an 𝜖-Skyline set of paths Π𝑤 in 𝐺𝑤 . if

and only if D𝐹 is an 𝜖-Skyline set of D𝑆 .

If condition. Let D𝐹 be an 𝜖-Skyline set of D𝑆 . By the definition

given in sec 4, this means that for every dataset 𝐷′ ∈ (D𝑆 \ D𝐹 ),
there exists at least one dataest 𝐷 ∈ D𝐹 such that 𝐷 𝜖-dominates

D′
. Specifically, this means that 𝐷 has costs that are at most (1+𝜖)

times the costs of 𝐷′
in all performance measures in P, and 𝐷 has

a strictly lower cost in at least one measure. From the reduction,

each path 𝜌𝑤 ∈ Π𝑤 corresponds to a sequence of transitions in

𝐺T leading to a final state 𝑠 , which represents a dataset 𝐷 ∈ D𝐹 .

Similarly, 𝜌′𝑤 ∉ Π𝑤 corresponds to a dataset 𝐷′ ∈ (D𝑆 \ D𝐹 ).
Since 𝐷 𝜖-dominates 𝐷′

, the corresponding path 𝜌𝑤 𝜖-dominates

𝜌′𝑤 . This dominance is preserved because the performancemeasures

P, directly corresponding to the edge weights in 𝐺𝑤 . Therefore,

Π𝑤 is an 𝜖-Skyline set of paths Π𝑤 in 𝐺𝑤 if D𝐹 is an 𝜖-Skyline set

of D𝑆 .

Only If condition. Conversely, we assume the following: (1) Π𝑤 is

an 𝜖-Skyline set of paths Π𝑤 in 𝐺𝑤 , but (2) the induced D𝐹 is not

an 𝜖-Skyline set ofD𝑆 . Assumption (2) implies one of the following

two cases:

• Case 1: There exists a dataset 𝐷′ ∈ (D𝑆 \ D𝐹 ) that is not
𝜖-dominated by any dataset in D𝐹 . This means there is a

corresponding path 𝜌′𝑤 in 𝐺𝑤 that is not 𝜖-dominated by

any path in Π𝑤 . This contradicts assumption (1) because 𝜌′𝑤
should be 𝜖-dominated by at least one path in Π𝑤 .

• Case 2: There exists a dataset 𝐷 ∈ D𝐹 that is 𝜖-dominated

by a dataset𝐷′′ ∈ (D𝑆 \D𝐹 ). This means there exists a path

𝜌′′𝑤 corresponding to 𝐷′′
in 𝐺𝑤 that 𝜖-dominates the path

𝜌𝑤 corresponding to 𝐷 in Π𝑤 . However, this would imply

that Π𝑤 does not fully capture the 𝜖-Skyline set because

𝜌𝑤 should not be in Π𝑤 if it is 𝜖-dominated by 𝜌′′𝑤 . Thus, it
contradicts assumption (1).

Both cases lead to a contradiction with the assumption (1) that

Π𝑤 is an 𝜖-Skyline set of paths Π𝑤 in 𝐺𝑤 . Therefore, the initial

assumption (2) must be false, meaning Π𝑤 is an 𝜖-Skyline set of

paths Π𝑤 in 𝐺𝑤 , only if D𝐹 is an 𝜖-Skyline set of D𝑆 .

By proving both directions, we establish the equivalence that

Π𝑤 is an 𝜖-Skyline set of paths Π𝑤 in 𝐺𝑤 , if and only if D𝐹 is an

𝜖-Skyline set of D𝑆 .

Correctness. We then show that algorithm ApxMODis is an op-

timized process of the algorithm in [40], which correctly com-

putes Π𝑤 for 𝐺𝑤 . Specifically, this means that in 𝐺𝑤 , for any

path 𝜌′𝑤 ∉ Π𝑤 with a corresponding state 𝑠′, there exists a path
𝜌𝑤 ∈ Π𝑤 with a corresponding state 𝑠 , such that for every perfor-

mance measure 𝑝𝑖 (where 1 ≤ 𝑖 ≤ 𝑑 , and 𝑑 = |P |), the condition
𝑠 .P(𝑝𝑖 ) ≤ (1 + 𝜖)𝑠′ .P(𝑝𝑖 ) holds.

We prove the correctness of this result by induction.

(1) Base case. After the first iteration in the main procedure of

ApxMODis, and due to the “merge” steps in the UPareto procedure,
the position 𝑝𝑜𝑠 (𝑠′) in Π1

𝑤 will be occupied by a path 𝜌𝑤 , for which:

(i) 𝑝𝑜𝑠 (𝑠) = 𝑝𝑜𝑠 (𝑠′); and (ii) 𝑠 .P(𝑝𝑑 ) ≤ 𝑠′ .P(𝑝𝑑 ). From (i) and based

on the Equation (1), for 1 ≤ 𝑖 ≤ 𝑑 − 1, we have

⌊
log

1+𝜖
𝑠.P(𝑝𝑖 )

𝑝𝑙𝑖

⌋
=⌊

log
1+𝜖

𝑠′ .P(𝑝𝑖 )
𝑝𝑙𝑖

⌋
. This implies log

1+𝜖
𝑠.P(𝑝𝑖 )

𝑝𝑙𝑖
−1 ≤ log

1+𝜖
𝑠′ .P(𝑝𝑖 )

𝑝𝑙𝑖
,

so that 𝑠 .P(𝑝𝑖 ) ≤ (1 + 𝜖)𝑠′ .P(𝑝𝑖 ) for 1 ≤ 𝑖 < 𝑑 . Combined with (ii),

we conclude that 𝑠 .P(𝑝𝑖 ) ≤ (1 + 𝜖)𝑠′ .P(𝑝𝑖 ) holds for 1 ≤ 𝑖 ≤ 𝑑 .

(2) Induction. Assume that after 𝑖 − 1 iterations, ApxMODis cor-
rectly computes the 𝜖-Skyline set Π𝑖−1

𝑤 for all paths from the source

node 𝑠𝑈 that contain up to 𝑖 − 1 edges. This means that for ev-

ery path 𝜌′𝑤 ∉ Π𝑖−1
𝑤 with at most 𝑖 − 1 edges, there exists a path

𝜌𝑤 ∈ Π𝑖−1
𝑤 such that the corresponding states 𝑠 and 𝑠′ satisfy:

𝑠 .P(𝑝𝑖 ) ≤ (1 + 𝜖)𝑠′ .P(𝑝𝑖 ),∀1 ≤ 𝑖 ≤ 𝑑



Generating Skyline Datasets for Data Science Models Conference’17, July 2017, Washington, DC, USA

We next prove that after 𝑖 iterations, ApxMODis correctly com-

putes the 𝜖-Skyline set Π𝑖
𝑤 for all paths from the source node 𝑠𝑈

that contain up to 𝑖 edges.

By induction, every path in Π𝑖−1
𝑤 𝜖-dominates any other paths of

up to 𝑖−1 edges not included in Π𝑖−1
𝑤 , so we only need to ensure the

correctness of the 𝑖th iteration. In this iteration, paths are expanded

to include 𝑖 edges. As seen in the base case, after the “merge” step

in procedure UPareto, ApxMODis ensures that for any state 𝑠′

corresponding to a path not included in Π𝑖
𝑤 , there exists at least

one state 𝑠 with corresponding path in Π𝑖
𝑤 , such that:

𝑠 .P(𝑝𝑖 ) ≤ (1 + 𝜖)𝑠′ .P(𝑝𝑖 ),∀1 ≤ 𝑖 ≤ 𝑑

Thus, after 𝑖 iterations, Π𝑖
𝑤 covers all paths with up to 𝑖 edges that

should be included in the 𝜖-Skyline set.

Putting these together, we show that ApxMODis correctly com-

putes the 𝜖-Skyline set Π𝑖
𝑤 for all 𝑖 > 0. This verifies the correctness

of ApxMODis. □

Proof of Lemma 4. Given T with configuration 𝐶 , if |D𝑆 | has a
size in 𝑂 (𝑓 ( |𝐷𝑈 |)), where 𝑓 is a polynomial, then ApxMODis is an
FPTAS forMODis.

Proof. We consider the reduction of an instance ofMODis to its
counterpart ofMOSP as detailed in the proof of Lemma 3.MOSP
is known to be solvable by an FPTAS. That is, there is an algorithm

that can compute an 𝜖-Skyline set in polynomial time relative to

the size of the input graph and
1

𝜖 [40].

We configure ApxMODis to run in a ( |D𝑆 |, 𝜖)-approximation,

which is a simplified implementation of an FPTAS in [40] with

multiple rounds of “replacement” strategy following path dom-

inance. In the proof of Lemma 3, we have already shown that

ApxMODis correctly computes the 𝜖-Skyline set for𝐺𝑤 , which is

equivalent to the 𝜖-Skyline set for D𝑆 in MODis. Meanwhile, as

|D𝑆 | is bounded by a polynomial of the input size |𝐷𝑈 |, the time

complexity of ApxMODis is 𝑂
(
𝑓 ( |𝐷𝑈 |) ·

((
log(𝑝𝑚 )

𝜖

) | P |−1
+ 𝐼

))
,

where 𝑓 is a polynomial. This ensures that ApxMODis approxi-
mates the Skyline set for all datasets within PTIME. □

Space cost. We also report the space cost. (1) It takes a vec-

tor of length in 𝑂 ( |𝑃 | − 1) to encode the position 𝑝𝑜𝑠 (𝜌). The
replacement strategy in ApxMODis keeps one copy of position

per path at runtime and “recycles” the space once it is verified

to be dominated. According to Equation 1, there are at most∏ | P |−1
𝑖=1

(⌊
log

1+𝜖
𝑝𝑚𝑎𝑥
𝑖

𝑝𝑚𝑖𝑛
𝑖

⌋
+ 1

)
paths to be remained in a ( |P| − 1)-

dimensional array at runtime, hence the total space cost is in

𝑂

(∏ | P |−1
𝑖=1

(⌊
log

1+𝜖
𝑝𝑚𝑎𝑥
𝑖

𝑝𝑚𝑖𝑛
𝑖

⌋
+ 1

))
.

A.2 BiMODis

Correlation based Pruning. We present the details of Correlation-

based Pruning. We first introduce a monotonicity property as the

condition for the applicability of the pruning.

Monotonicity property. Given the current historical performances

over valuated states, we say a state 𝑠 (resp. 𝑠′) with a performance

measure 𝑝 at a path 𝜌 has a monotonicity property, if for any state

𝑠′′ reachable from 𝑠 (resp. can reach 𝑠′) via 𝜌 , 𝑠 .𝑝𝑢 <
𝑠′′ .𝑝𝑙
1+𝜖 (resp.

𝑠′ .𝑝𝑢 <
𝑠′′ .𝑝𝑙
1+𝜖 ).

Pruning rule. We next specify Correlation-based pruning with a

pruning rule as follows. First, recall that BiMODis dynamically

maintains, for each performance 𝑝 ∈ P and each state 𝑠 , an esti-

mated range [𝑝𝑙 , 𝑝𝑢 ] ⊆ [𝑝𝑙 , 𝑝𝑢 ]. The bounds 𝑝𝑙 (resp. 𝑝𝑢 are up-

dated with runtime performance estimation of 𝑠 upon the changes

of correlated performance measures.

Specifically, for any state 𝑠′ on a path 𝜌 obtained by augmented

features of its “ancestor” state 𝑠 on 𝜌 , where 𝑠 has a performance 𝑝

“learning cost” 𝑠 .𝑝 with lower bound 𝑠 .𝑝𝑙 = 0.4, and an “accuracy”

with estimated upperbound 𝑠 . ˆ𝑝′𝑢 = 0.8, then (1) 𝑠′ has an estimated

running cost initialized as 𝑠 .𝑝𝑙 = 0.4, indicating a learning cost no

smaller than the counterpart 𝑠 with smaller dataset; and (2) 𝑠′ has an
estimated accuracy with an upperbound 𝑠 . ˆ𝑝′𝑢 = 0.8, as 𝑝 and 𝑝′ are
statistically negatively correlated with a rule specified as: for every

current valuated 𝑠 , 𝑝 as “learning cost”, and 𝑝′ as “accuracy”, if 𝑝
is larger, then 𝑝′ is smaller. The algorithm BiMODis dynamically

maintains a bounds list for all created states 𝑠 in the bidirectional

search.

Given two states 𝑠 and 𝑠′, where 𝑠′ ≾𝜖 𝑠 , a state 𝑠′′ on a path 𝜌

from 𝑠 or to 𝑠′ can be pruned according to Correlation-Based Pruning
if for every 𝑝 ∈ P, 𝑠′′ has 𝑝 at 𝜌 with a monotonicity property w.r.t.
𝑠 (resp. 𝑠′).

Note that the above rule is checkable in PTIME in terms of input

size |D𝑆 |. When |D𝑆 | is large, one can generate a path with all

states unevaluated, and check at runtime if the condition holds

between two evaluated states and any unevaluated state in betwen

in PTIME, to prune the unevaluated states.

Example 6:We illustrate Correlation-Based Pruning in the figure

below. From left to right, it depicts a set of test records 𝑅, the correla-

tion graph𝐺C , and part of the running graph𝐺T .𝐺C is constructed

from 𝑇 with measures as nodes and Spearman correlations as edge

weights. For each 𝑠𝑛 ∈ 𝐺T , the associated 𝑝 ∈ P𝑠𝑛 is obtained by

test 𝑡𝑠𝑛 = (𝑀,𝐷𝑠𝑛 ).

Label 𝑝1 𝑝2 𝑝3
𝑠𝑈 (1, 1, 1, 1) 0.42 0.18 0.9

𝑠1 (1, 1, 1, 0) 0.4 0.17 0.1

𝑠2 (1, 0, 0, 1) 0.5 0.22 /

𝑠3 (0, 1, 0, 0) 0.45 / /

𝑠𝑏 (0, 0, 0, 0) 0.6 0.4 0.3

At 𝜃 = 0.8, 𝑝1 and 𝑝2 are positively correlated with each other

and negatively correlated with |𝐷 |, so P𝑘 = {𝑝1, 𝑝2}. From 𝑠𝑈
and 𝑠𝑏 , the forward and backward frontiers derive states 𝑠1 and

𝑠3, respectively. To estimate 𝑠3 .P(𝑝2), note that 𝑠3 .P(𝑝1) = 0.45,

which lies between 𝑠𝑈 .P(𝑝1) = 0.42 and 𝑠2 .P(𝑝1) = 0.5. Given the

strong correlation between 𝑝1 and 𝑝2, we infer 𝑠3 .P(𝑝2) to bewithin
the interval [0.18, 0.22], with 𝑝𝑙2 = 𝑠𝑈 .P(𝑝2) and ˆ𝑝𝑢2

= 𝑠2 .P(𝑝2).
With 𝜖 = 0.3, we find 𝑠3 ≾𝜖 𝑠1 because 0.45 ≤ (1 + 0.3) · 0.4
and 0.22 ≤ (1 + 0.3) · 0.17. For intermediate states 𝑠4(with bitmap

entry (1, 1, 0, 0)) and 𝑠5(with bitmap entry (0, 1, 1, 0)), which are

not recorded in 𝑇 and have |𝐷𝑠4 | = |𝐷𝑠5 | = 2, a similar inference

process shows they fall within the bounds set by [𝑠1 .P, 𝑠3 .P]. As a
result, 𝑠4 and 𝑠5 can be pruned. □



Conference’17, July 2017, Washington, DC, USA Mengying Wang, Hanchao Ma, Yiyang Bian, Yangxin Fan, and Yinghui Wu

We are now ready to show Lemma 5.

Proof of Lemma 5 Let 𝑠 ∈ 𝑄 𝑓 and 𝑠′ ∈ 𝑄𝑏 . If 𝑠′ ≾𝜖 𝑠 , then any
state node 𝑠′′ on a path from 𝑠 or to 𝑠′, that can be pruned according to
Correlation-Based Pruning, 𝐷𝑠′′ is not in 𝜖-Skyline sets of the datasets
from valuated states.

We next perform a case study of 𝑠 and 𝑠′ as follows, subject to
the monotonicity property.

Case 1: Both 𝑠′ .P(𝑝) and 𝑠 .P(𝑝) are valuated. If 𝑠′ ≾𝜖 𝑠 , then

by definition, 𝑠′ .P(𝑝) ≤ (1 + 𝜖)𝑠 .P(𝑝) for all 𝑝 ∈ P. This readily

leads to 𝜖-dominance, i.e., 𝑠′ ⪰𝜖 𝑠 . As 𝑠′′ has every performance

measures 𝑝 ∈ P with a monotonicity property w.r.t. 𝑠 , 𝑠 ⪰𝜖 𝑠′′.
Hence 𝑠′′ can be safely pruned without valuation.

Case 2: Neither 𝑠′ .P(𝑝) nor 𝑠 .P(𝑝) is valuated. By definition,

as 𝑠′ ≾𝜖 𝑠 , then for every 𝑝 ∈ P, 𝑠′ .𝑝𝑢 ≤ (1 + 𝜖)𝑠 .𝑝𝑙 . Given that

𝑠′′ has every performance measures 𝑝 ∈ P with a monotonicity

property w.r.t. 𝑠 , then by definition, for each 𝑝 ∈ P, we have 𝑠′ .𝑝 ≤
𝑠′ .𝑝𝑢 ≤ (1 + 𝜖)𝑠 .𝑝𝑙 ≤ (1 + 𝜖)𝑠 .𝑝𝑢 < (1 + 𝜖) 𝑠

′′ .𝑝𝑙
1+𝜖 ≤ 𝑠′′ .𝑝 , for every

𝑝 ∈ P. By definition of state dominance, 𝑠′ ≻ 𝑠′′, for unevaluated
𝑠′′. Following a similar proof, one can infer that 𝑠 ≻ 𝑠′′ for a state 𝑠
in the forward front of BiMODis. Hence 𝑠′′ can be safely pruned.

Case 3: One of 𝑠′ .P(𝑝) or 𝑠 .P(𝑝) is valuated. Given that 𝑠′ ≾𝜖 𝑠 ,
we have

• (a) 𝑠′ .P(𝑝) ≤ (1 + 𝜖)𝑠 .𝑝𝑙 , if only 𝑠′ .P(𝑝) is valuated; or
• (b) 𝑠′ .𝑝𝑢 ≤ (1 + 𝜖)𝑠 .P(𝑝), if only 𝑠 .P(𝑝) is valuated.

Consider case 3(a). As 𝑠 can reach 𝑠′′ via a path 𝜌 , and 𝑠′′ satisfiies
the pruning condition, we can infer that 𝑠′ .P(𝑝) ≤ (1 + 𝜖)𝑠 .𝑝𝑙 ≤
(1 + 𝜖)𝑠 .𝑝𝑢 < (1 + 𝜖) 𝑠

′′ .𝑝𝑙
1+𝜖 ≤ 𝑠′′ .𝑝 , hence 𝑠′ ≻ 𝑠′′.

Similarly for case 3(b), we can infer that 𝑠′ .𝑝𝑢 ≤ (1 + 𝜖)𝑠 .𝑝 ≤
(1 + 𝜖)𝑠 .𝑝𝑢 < (1 + 𝜖) 𝑠

′′ .𝑝𝑙
1+𝜖 ≤ 𝑠′′ .𝑝 . hence 𝑠′ ≻ 𝑠′′. For both cases,

𝑠′′ can be pruned without evaluation.

Lemma 5 hence follows.

We present the details of the algorithm BiMODis in Fig. 11.

A.3 DivMODis

Proof of Lemma 6 Given 𝑁 and 𝜖 ,DivMODis achieves a 1

4
approxi-

mation for diversifiedMODis, i.e., (1) it correctly computes a 𝜖-Skyline
set 𝐷𝑃

𝐹
over 𝑁 valuated datasets, and (2) div(𝐷𝑃

𝐹
) ≥ 1

4
div(D∗

F).
We here present a detailed analysis for the lemma 6.

Monotone submodularity. We first show that the diversification

function div(·) is a monotone submodular function. Given a set of

datasets D𝐹 , we show that for any set of datasets 𝑌 ⊆ 𝑋 ⊆ D𝐹 ,

• div(𝑌 ) ≤ div(𝑋 ); and
• ∀𝑥 ∈ D𝐹 \𝑋 , div(𝑋 ∪{𝑥}) −div(𝑋 ) ≤ div(𝑌 ∪{𝑥}) −div(𝑌 ).

(1) To see div(𝑌 ) ≤ div(𝑋 ), we have

div(𝑋 ) − div(𝑌 ) =
𝑘−1∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

dis(𝐷𝑋
𝑖 , 𝐷𝑋

𝑗 ) −
𝑘−1∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

dis(𝐷𝑌
𝑖 , 𝐷

𝑌
𝑗 )

Given 𝑌 ⊆ 𝑋 , we have

div(𝑋 ) − div(𝑌 ) =
∑︁

𝐷∈𝑋 \𝑌,𝐷∈𝑌
dis(𝐷,𝐷 ′ ) ≥ 0;

(2) We next show the submodularity of the function div(·). To
simplify the presentation, we introduce a notation marginal gain.

Algorithm 4 BiMODis

1: Input: Configuration 𝐶 = (𝑠𝑈 ,O, 𝑀,𝑇 , E), Records 𝑅𝑒𝑐 , a con-
stant 𝜖 > 0;

2: Output: 𝜖-Skyline set D𝐹 .

3: Set D𝐹 := ∅, BIB := ∅, PrunS := ∅; 𝑠𝑏 = BackSt(𝑠𝐸 , 𝑠𝑈 );
4: queue 𝑄 𝑓 := {(𝑠𝑈 , 0)}, queue 𝑄𝑏 := {(𝑠𝑏 , 0)};
5: D0

𝐹
[𝑝𝑜𝑠 (𝑠𝑈 )] = CorrFP(𝑠𝑈 , 𝑅𝑒𝑐, E);

6: D0

𝐹
[𝑝𝑜𝑠 (𝑠𝑏 )] = CorrFP(𝑠𝑏 , 𝑅𝑒𝑐, E);

7: while 𝑄 𝑓 ≠ ∅, 𝑄𝑏 ≠ ∅ and 𝑄 𝑓 ∩𝑄𝑏 = ∅ do
8: (𝑠′, 𝑑) = 𝑄 𝑓 .dequeue(), D𝐹

𝑑+1 = D𝐹
𝑑
; ⊲ Forward Serach

9: for all 𝑠 ∈ OpGen (𝑠′, ‘F’) do
10: P𝑠 = CorrFP(𝑠, 𝑅𝑒𝑐, E); set 𝜌𝑠 with P𝑠 ;

11: if 𝑝𝑜𝑠 (𝑠) ∈ PrunS then continue;
12: pruned = False

13: for bound in SandwBs do
14: pruned = SandwPrun(𝜌𝑠 , bound, SandwBs)

15: if pruned then break;
16: pruned = UPareto (D𝑑+1

𝐹
, PrunS, pos(s), 𝜖)

17: if not pruned then 𝑄 𝑓 .enqueue((s, d+1))

18: (𝑠′, 𝑑) = 𝑄𝑏 .dequeue(), D𝐹
𝑑+1 = D𝐹

𝑑
; ⊲ Backward Serach

19: for all 𝑠 ∈ OpGen (𝑠′, ‘B’) do
20: same with line 10 to 16 in Forward Search

21: if not pruned then 𝑄𝑏 .enqueue((s, d+1))

22: procedure CorrFP(𝑠 , 𝑅𝑒𝑐 , E)
23: Build 𝐺𝑐 for measures recorded in 𝑅𝑒𝑐;

24: StrongRs = GetSR(𝐺𝑐 )

25: if s in 𝑅𝑒𝑐 .keys() then ⊲ Case 1: By 𝑅𝑒𝑐

26: P𝑠 = 𝑅𝑒𝑐 [𝑠];
27: if |𝑣𝑎𝑙𝑖𝑑 (P𝑠 ) | ≥ 0.8|P𝑠 | then return P𝑠 ;

28: for all missing 𝑝𝑠
𝑖
in P𝑠 do ⊲ Case 2: By 𝐺𝑐

29: if (𝑝𝑖 , 𝑝 𝑗 ) ∈ StrongRs and 𝑝𝑠
𝑗
∈ 𝑅𝑒𝑐 [𝑠] then

30: find closed 𝑝𝑙
𝑗
and 𝑝𝑢

𝑗
with 𝑝𝑠

𝑗
in 𝑅𝑒𝑐;

31: 𝑝𝑠
𝑖
= (𝑝𝑙

𝑖
+ 𝑝𝑢

𝑖
)/2

32: if |𝑣𝑎𝑙𝑖𝑑 (P𝑠 ) | < 0.8|P𝑠 | then ⊲ Case 3: By E
33: fillmissing 𝑝𝑠 ∈ P𝑠 by invoking E;update𝑅𝑒𝑐 [𝑠] = P𝑠

34: return P𝑠 ;

Figure 11: Complete Version of BiMODis

For any 𝑥 ∈ D𝐹 \𝑋 and 𝑌 ⊆ 𝑋 , the marginal gain of diversification

score for 𝑋 ∪ {𝑥} and 𝑌 ∪ {𝑥}, denoted as mg(𝑋, 𝑥) and mg(𝑌, 𝑥),
are defined as:

mg(𝑋, 𝑥 ) =
𝑘−1∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

𝛼
1 − cos(𝑠𝑖 .𝐿, 𝑠 𝑗 .𝐿)

2

−
𝑘−1∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

𝛼
1 − cos(𝑠𝑙 .𝐿, 𝑠𝑚 .𝐿)

2

+
𝑘−1∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

(1 − 𝛼 )
euc(𝑡𝑖 .P, 𝑡 𝑗 .P)

eucm
−

𝑘−1∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

(1 − 𝛼 ) euc(𝑡𝑙 .P, 𝑡𝑚 .P)
eucm

where 𝐷𝑖 , 𝐷 𝑗 ∈ 𝑋 ∪ {𝑥} and 𝐷𝑙 , 𝐷𝑚 ∈ 𝑋 .



Generating Skyline Datasets for Data Science Models Conference’17, July 2017, Washington, DC, USA

mg(𝑌, 𝑥 ) =
𝑘−1∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

𝛼
1 − cos(𝑠𝑖 .𝐿, 𝑠 𝑗 .𝐿)

2

−
𝑘−1∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

𝛼
1 − cos(𝑠𝑙 .𝐿, 𝑠𝑚 .𝐿)

2

+
𝑘−1∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

(1 − 𝛼 )
euc(𝑡𝑖 .P, 𝑡 𝑗 .P)

eucm
−

𝑘−1∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

(1 − 𝛼 ) euc(𝑡𝑙 .P, 𝑡𝑚 .P)
eucm

where 𝐷𝑖 , 𝐷 𝑗 ∈ 𝑌 ∪ 𝑥 and 𝐷𝑙 , 𝐷𝑚 ∈ 𝑌 .

In our problem,we only consider 𝜖-Skyline sets with size at most

𝑘 . With this condition, we observe that given the dataset 𝑥 ,mg(𝑌, 𝑥)
and mg(𝑋, 𝑥) measure the marginal gain of diversification scores

by replacing a dataset 𝑥 ′ ∈ 𝑌 with 𝑥 and 𝑥 ′ ∈ 𝑋 with 𝑥 . mg(𝑌, 𝑥)
and mg(𝑋, 𝑥) measure the margin gain by replacing 𝑥 with a same

dataset 𝑥 ′ over a same 𝜖-Skyline set with size 𝑘 . In this case, we

can have

mg(𝑋, 𝑥 ) = mg(𝑌, 𝑥 )
due to DivMODis replace the same dataset 𝑥 ′ that are in 𝑋 and

𝑌 . Thus, we can see that the marginal gain of 𝑋 is no larger than

marginal gain of 𝑌 by including 𝑥 . This analysis completes the

proof of diversification function div(·) is a monotone submodular

function.

Approximability. We next prove that DivMODis ensures a 1

4
-

approximation of diversified size-𝑘 Skyline set. We verify this by

proving an invariant that the approximation holds for any size-𝑘

𝜖-Skyline set 𝐷𝑃
𝐹
generated at every level 𝑖 . By integrating a greedy

selection and replacement policy, DivMODis keeps a -set with the

most diverse and representative datasets to mitigate the biases in

the Skyline set at each level. Consider a set of datasets 𝐷𝑖−1
𝐹

at

level 𝑖 , and a new batch of datasets 𝐷𝑖
𝐹
arrives. DivMODis aims

to maintain the set of datasets 𝐷𝑖
𝐹
such that, at level 𝑖 , |𝐷𝑖

𝐹
| ≤ 𝑘 ,

and div(𝐷𝑖
𝐹
) is maximized. At any level 𝑖 , DivMODis approximates

the global optimal solution upon the newly generated datasets.

Consider the global optimal solution at level 𝑖 , over 𝐷𝑖
𝐹
as 𝐷∗𝑃

𝐹
, we

can show that DivMODis maintains 𝐷𝑃
𝐹
at any level 𝑖 by solving a

streaming submodular maximization problem [3].

Reduction. We show there exists an approximation at any level by

a reduction from the diversification phase of MODis problem to

stream submodular maximization problem [2, 3]. Given a stream-

ing of elements 𝐸 = {𝑒0, . . . 𝑒𝑚}, an integer 𝑘 , and a submodular

score function 𝑓 , it computes a set of elements 𝑆 with size 𝑘 with

maximized 𝑓 (𝑆). Given the 𝜖-Skyline set D𝑃
𝐹
, and integer 𝑘 , the

diversification ofMODis problem aims to compute an 𝜖-Skyline set

D𝐹
𝑃
such that (1) |D𝐹

𝑃 | ≤ 𝑘 and div(D𝐹
𝑃 ) is maximized. Given

an instance of diversification of MODis problem at any level 𝑖 , we

construct an instance of stream submodular maximization problem

by setting (1) 𝑓 = div; (2) 𝐸 = 𝐷𝑖
𝐹
; (3) integer 𝑘 is equal to the value

of k in the instance of diversification ofMODis.

Correctness.DivMODis approximates 𝐷∗𝑃
𝐹

with a ratio
1

4
follows a

greedy selection and replacement policy that integrates the "re-

place" strategy given the D𝐹
𝑖
at level 𝑖 . DivMODis always ter-

minates when no datasets are generated at level 𝑖 by procedure

UPareto (See lines 1-3 in Fig. 6).

Approximation. D𝑃
𝐹
approximates D∗𝑃

𝐹
with a ratio

1

4
when termi-

nates at level 𝑖 .DivMODis exploits the greedy selection as in [3] but

Figure 12: Efficiency Analysis on 𝑇5 and 𝑇3

Figure 13: Scalability on 𝑇5

specifies diversification function div(D𝑃
𝐹
) to maintain the 𝜖-Skyline

set of datasets and replaces newly arrived datasets whenever pos-

sible. It returns the 𝜖-Skyline set of datasets those correspond-

ing elements in 𝐸 are selected by the instance stream submodular

maximization problem. This ensures a
1

4
approximability by this

consistent construction from the solution for stream submodular

maximization.

The above analysis completes the proof of Lemma 6.

Appendix B: Additional Experiments
We have performed more complementary experimental studies.

Efficiency. Fig. 12 (a, b) evaluates the efficiency ofMODis algo-
rithms for task 𝑇 5 on generating graph data for the link regression

task. The observation is consistent with our findings for their coun-

terparts over tabular data. In particular, BiMODis is quite feasible
for generating graph data for GNN-based link regression task, with

around 20 seconds in all settings, and consistently outperforms

otherMODis algorithms. Fig. 12 (c, d) presents the efficiency re-

sults for task𝑇3, which involves avocado price prediction. Similar to

other tasks, BiMODis demonstrates superior efficiency, maintain-

ing significantly lower search times compared to other methods.

The results reinforce the scalability and practicality of BiMODis
across diverse datasets and tasks, including both graph-based and

tabular data.



Conference’17, July 2017, Washington, DC, USA Mengying Wang, Hanchao Ma, Yiyang Bian, Yangxin Fan, and Yinghui Wu

𝑇1: Movie Original METAM METAM-MO Starmie SkSFM H2O ApxMODis NOBiMODis BiMODis DivMODis
𝑝𝐴𝑐𝑐 0.8560 0.8743 0.8676 0.8606 0.8285 0.8545 0.9291 0.9874 0.9755 0.9427

𝑝𝑇𝑟𝑎𝑖𝑛 1.4775 1.6276 1.1785 1.2643 0.6028 0.9692 0.9947 0.8766 0.8027 0.8803

𝑝𝐹𝑠𝑐 0.0824 0.0497 0.0801 0.1286 0.7392 0.3110 0.6011 0.7202 0.9240 0.8010

𝑝𝑀𝐼 0.0538 0.0344 0.0522 0.1072 0.3921 0.1759 0.4178 0.3377 0.3839 0.4165
Output Size (3264, 10) (3264, 11) (3264, 11) (3264, 23) (3264, 3) (3264, 8) (2958, 9) (1980, 12) (1835, 11) (2176, 10)

𝑇3: Avocado Original METAM METAM-MO Starmie SkSFM H2O ApxMODis NOBiMODis BiMODis DivMODis
MSE 0.0428 0.0392 0.0312 0.036152 0.050903 0.0442 0.029769 0.022821 0.027511 0.027511

MAE 0.1561 0.1497 0.1452 0.145259 0.173676 0.1592 0.127916 0.115326 0.123200 0.123200

Training Time 0.0280 0.0178 0.0350 0.043600 0.008618 0.0156 0.006516 0.003293 0.004366 0.004366

Output Size (9999, 11) (9999, 12) (9999, 12) (9999, 12) (9999, 3) (9999, 5) (1589, 10) (817, 5) (1310, 9) (1310, 9)

Table 6: Comparison of Data Discovery Algorithms in Multi-Objective Setting (𝑇1, 𝑇3)

Figure 14: Case 1 (left): Discover Datasets for Materials Peak
Classification Analysis. Case 2 (right): Test Data Generation
for Model Performance Benchmarking

Scalability. Fig. 13 presents the scalability test results for𝑇5. With

a universal graph size of (7925, 34), we performed 𝑘-means cluster-

ing on edges, setting 5 as the minimum number of clusters, 30 as

the maximum, and identifying 13 as the optimal number of clus-

ters based on performance. For node features, we leveraged the

graph’s structure to reduce the input feature space from 34 to 10 by

aggregating attributes from similar types of relations, such as com-

bining multiple training records of an ML model, while preserving

all augmented information. Across all settings, methods applied

bi-directional search (BiMODis,NOBiMODis, andDivMODis) con-
sistently achieve superior efficiency, handling both increasing at-

tributes and active domain sizes effectively. In contrast, ApxMODis
exhibits slower performance as |𝐴| and |adom| grows, highlighting
the scalability of the bi-directional search strategy in managing

large and complex graph datasets.

Effectiveness. The effectiveness results for 𝑇1 and 𝑇3 are reported
in Table 6, where we select the best results from the Skyline set

based on the first metric for each task. These results align with

those observed for other tasks, consistently showing thatMODis
methods outperform baseline approaches in most cases. Notably,

NOBiMODis and BiMODis secure the first and second positions

across the majority of metrics.

Sensitivety analysis. Fig. 15 reports the impact of critical factors

including the maximum length of paths, and 𝜖 (as in 𝜖-Skyline set)

to the accuracy measures. The larger the “Percentage Change” is,

the better the generated Skyline set can improve the prformance of

the input model. We found that all theMODis algorithms benefit

from larger maximum length and smaller 𝜖 in terms of percentage

of accuracy improvement. This is consistent with our observation

over the tests that report absolute accuracy measures. Moreover,

MODis algorithms are relatively more sensitive to the maximum

length, compared with the changes to 𝜖 .

Case Study. We show two real applications ofMODis in Fig. 14,
which are described in Sec. 6.



Generating Skyline Datasets for Data Science Models Conference’17, July 2017, Washington, DC, USA

Figure 15: Sensitivity Analysis for Parameters on 𝑇5


	Abstract
	1 Introduction
	2 Models and Performance Evaluation
	3 Skyline Dataset Generation: A Formalization
	4 Skyline Data Generation Problem
	5 Computing Skyline Sets
	5.1 Approximating Skyline Sets
	5.2 Approximation Algorithm
	5.3 Bi-Directional Skyline Set Generation
	5.4 Diversified Skyline Dataset Generation

	6 Experiment Study
	7 Conclusion
	References
	A Algorithms and Proof
	A.1 ApxMODis
	A.2 BiMODis
	A.3 DivMODis

	B Additional Experiments

