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Background/Motivation

● “Black-Box” GNNs: 
○ The inference of GNN models are black-box.
○ Hard to understand which part of the input causes the results. 

● “Explainability”:
○ Domain experts requires reliable predictions.
○ Highly related to trustworthy challenges. 

Dazhuo Qiu, Mengying Wang, Arijit Khan, Yinghui Wu Generating Robust Counterfactual Witness for Graph Neural Networks 1/16



Example - “Vulnerable Zone” in Cyber Networks

🔒 GNN-based Security System: 

● Detection: Train GNN based on historical 
attacks to classify files’  vulnerability.

● Protection: Enhanced security for 
vulnerable files (colored orange).

💡How can we identify a "Vulnerable Zone" within cyber networks where, if protected,  GNN 
predictions remain solid, even if other parts of the network are disturbed by deceptive attacks?

🕐 Factual Witness, 🕔Counterfactual Witness, 🕗Robust Counterfactual Witness

☠ Multi-Phase Cyber Attack Strategy: 

● Phase 1: Deception Attacks: Conduct 
deceptive but harmless attacks to Induce 
false invulnerable classification on target.

● Phase 2: True Attack: attack by exploiting 
reduced defenses on target.
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Explanation Structures
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● Factual Explanation (Witness): 
○ M(v, G) = M(v, G𝗌) = 𝑙
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We are the first to consider 
all three criteria! 😎



RCW Verification & Generation Problem

● Verification Problem: Given G𝗌, decide if G𝗌 is a k-RCW for a set of test nodes V𝗍, w.r.t a model M.  

○ Witness verification 👉PTIME.

○ CW verification 👉 PTIME.

○ 𝒌-RCW verification 👉NP-hard.
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● Verification Problem: Given G𝗌, decide if G𝗌 is a k-RCW for a set of test nodes V𝗍, w.r.t a model M.  

○ Witness verification 👉PTIME.

○ CW verification 👉 PTIME.

○ 𝒌-RCW verification 👉NP-hard.

● Generation Problem: Given a graph G and V𝗍, compute a 𝒌-RCW if exists.

○ 𝒌-RCW generation in general 👉co-NP-hard

○ under (𝒌, b)-disturbances 👉PTIME. 
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A1 - Verification of Witness

● Factual Verification: 
○ Conduct the model inference to verify if the 

subgraph is a witness. 
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A1 - Verification of Witness

● Factual Verification: 
○ Conduct the model inference to verify if the 

subgraph is a witness. 

● Counterfactual Verification: 
○ Conduct the model inference to verify if the 

subgraph is a counterfactual witness. 

● Robust Verification: 
○ For each “non-true” label (labels ≠ prediction), 

verify if the subgraph remains a counterfactual 
witness under k edge flips. 

○ For each node in the “fragile” area (remaining 
subgraph), select top-b edges that are most likely 
changing the node labels. (PageRank score) 
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A1 - Verification of Witness

# of classes

Size of remaining graph

Sorting cost of 
a single node

One time APPNP 
inference cost
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A2 - Generating Robust Witness

● Expand: 

● Verify: 
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A2 - Generating Robust Witness

● Expand: 
○ Includes node pairs that most likely to change its label if “flipped”. 

○ Augment the subgraph (initialized with test nodes) with edges that minimize the 
worst-case margin. 

● Verify: 
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A2 - Generating Robust Witness

● Expand: 
○ Includes node pairs that most likely to change its label if “flipped”. 

○ Augment the subgraph (initialized with test nodes) with edges that minimize the 
worst-case margin. 

● Verify: 
○ Check if the expanded subgraph is RCW

○ Under k-disturbance: k edges that are most likely to change the prediction. 
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A2 - Generating Robust Witness
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A2 - Generating Robust Witness
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A3 - Parallel Witness Generation

● Partition: 
○ Edge-cut based partition where each worker processes one fragment graph.
○ Using a bitmap to record the verified k-disturbance to avoid redundant verification.  

● Union: 
○ Assemble a global subgraph from each worker with the local subgraph. 
○ In each worker expand and verify local subgraph, and maintain the local bitmap. 
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Experiment Settings: Datasets

● Different domains. 
○ BAHouse: Synthetic. 
○ PPI: Protein-Protein Interaction. 
○ CiteSeer: Citation Network. 
○ Reddit: Social Network. 

● Large Scale. 
○ Reddit: Over one hundred million edges. 
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Experiment Settings: Baselines

● CF-GNNExplainer: 
○ Explainer that considers counterfactual property. 

● CF²: 
○ Explainer that considers both counterfactual and factual properties.

● RoboGExp: 
○ Our explainer that considers all the properties: counterfactual, factual, and 

robustness. 
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Experiment Settings: Evaluation Metrics

● Normalized GED:
(Consistency)  

● Fidelity+: 
(Counterfactual) 

● Fidelity-: 
(Factual) 
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Experiment Results: Quality of Explanations

● Normalized GED: 
○ Robustness facilitates the consistency of the explanation under disturbance. 

● Fidelity+ and Fidelity-: 
○ Verification procedure ensures a high fidelity performance. 

● Size: 
○ RoboGExp integrate the explanation of each test node. 
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● Normalized GED (Consistency): 
○ Outperform baselines even under high disturbance. 

● Fidelity+ (Counterfactual): 
○ High disturbance enrich the “fragile” search space. 

Experiment Results: Effectiveness
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Experiment Results: Efficiency & Scalability

● Generation Time (Efficiency): 
○ Outperform baselines in various datasets. 

● Parallel (Scalability): 
○ Capability of parallelization for scalability. 
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Conclusion & Future Work

● Conclusion: 
○ Explanation structure: k-robust counterfactual witness (k-RCW). 

○ Feasible algorithms for verification and generation problems with impressive 
results. 

● Future Work: 
○ Minimal/Minimum explanations. 

○ Extension to other GNN-based applications. 
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