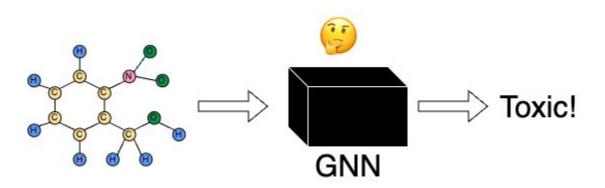
Generating Robust Counterfactual Witnesses for Graph Neural Networks

Dazhuo, Qiu^{*}, Mengying Wang⁺, Arijit Khan^{*}, Yinghui Wu⁺ *Aalborg University (Denmark), ⁺Case Western Reserve University (USA)

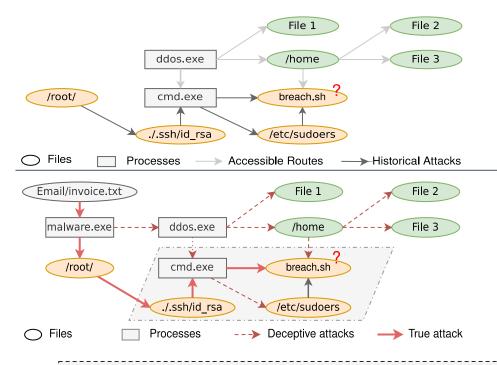
ICDE '24, May 13–17, 2024, Utrecht, Netherlands

Roadmap

- Introduction
 - Background/Motivation
 - Explanation Structures
 - RCW Verification & Generation Problem
- Methods & Algorithms
 - A1 Verification of Witness
 - A2 Generating Robust Witness
 - A3 Parallel Witness Generation
- Experiment
 - Experiment Settings
 - Experiment Results
- Conclusion & Future Work


Background/Motivation

<u>"Black-Box" GNNs</u>:


- The inference of GNN models are black-box.
- Hard to understand which part of the input causes the results.

<u>"Explainability":</u>

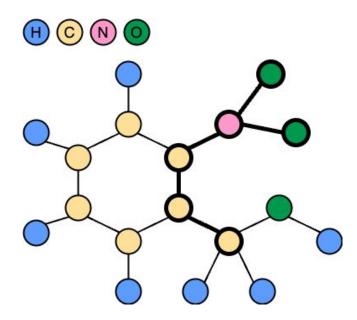
- Domain experts requires reliable predictions.
- Highly related to trustworthy challenges.

Example - "Vulnerable Zone" in Cyber Networks

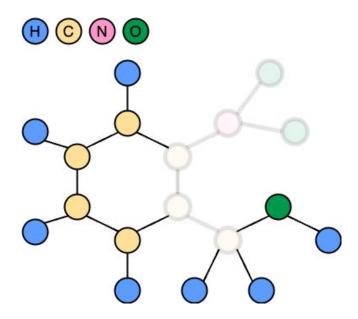
🔒 GNN-based Security System:

- **Detection**: Train <u>GNN</u> based on <u>historical</u> <u>attacks</u> to classify files' vulnerability.
- Protection: <u>Enhanced security</u> for vulnerable files (colored orange).

💐 <u>Multi-Phase Cyber Attack Strategy:</u>


- Phase 1: Deception Attacks: Conduct <u>deceptive but harmless attacks</u> to Induce <u>false invulnerable</u> classification on target.
- Phase 2: True Attack: attack by exploiting reduced defenses on target.

How can we identify a "<u>Vulnerable Zone</u>" within cyber networks where, <u>if protected</u>, <u>GNN</u> predictions remain solid</u>, even if other parts of the network are <u>disturbed by deceptive attacks</u>?
Factual Witness, Counterfactual Witness, Product Counterfactual Witness


Dazhuo Qiu, Mengying Wang, Arijit Khan, Yinghui Wu

Generating Robust Counterfactual Witness for Graph Neural Networks

- Factual Explanation (Witness):
 - M(v, G) = M(v, Gs) = l

- Factual Explanation (Witness):
 - $\circ \quad \mathsf{M}(\mathsf{v},\,\mathsf{G})=\mathsf{M}(\mathsf{v},\,\mathsf{Gs})=l$
- <u>Counterfactual Explanation (CW)</u>:
 - $M(v, G) \neq M(v, G \setminus Gs) \neq l$

- Factual Explanation (Witness):
 - $\circ \quad \mathsf{M}(\mathsf{v},\,\mathsf{G})=\mathsf{M}(\mathsf{v},\,\mathsf{Gs})=l$
- <u>Counterfactual Explanation (CW)</u>:
 - $M(v, G) \neq M(v, G \setminus Gs) \neq l$
- **Robust Explanation (k-RCW)**:
 - Gs remains consistent under disturbance.

- Factual Explanation (Witness):
 - $\circ \quad \mathsf{M}(\mathsf{v},\,\mathsf{G})=\mathsf{M}(\mathsf{v},\,\mathsf{Gs})=l$
- <u>Counterfactual Explanation (CW)</u>:
 - $\circ \quad \mathsf{M}(\mathsf{v},\,\mathsf{G}) \neq \mathsf{M}(\mathsf{v},\,\mathsf{G}\backslash\mathsf{Gs}) \neq l$
- Robust Explanation (k-RCW):
 - Gs remains consistent under disturbance.

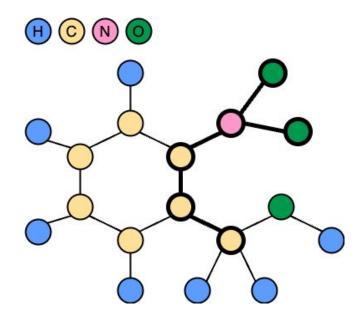
We are the first to consider <u>all three criteria</u>!

RCW Verification & Generation Problem

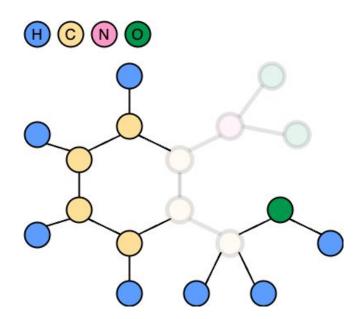
- **<u>Verification Problem</u>**: Given Gs, decide if Gs is a *k*-RCW for a set of test nodes Vt, w.r.t a model M.
 - Witness verification $-\frac{PTIME}{PTIME}$.
 - CW verification <u>PTIME</u>.
 - k-RCW verification $-\frac{k}{NP-hard}$.

RCW Verification & Generation Problem

- **<u>Verification Problem</u>**: Given Gs, decide if Gs is a *k*-RCW for a set of test nodes Vt, w.r.t a model M.

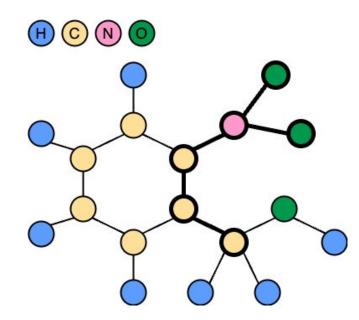

 - CW verification *f* <u>PTIME</u>.
 - k-RCW verification $-\frac{b}{b}$ -hard.

- **Generation Problem**: Given a graph G and Vt, compute a *k*-RCW if exists.
 - k-RCW generation in general $-\frac{k}{2}$
 - under (k, **b**)-disturbances $-\frac{PTIME}{PTIME}$.


Roadmap

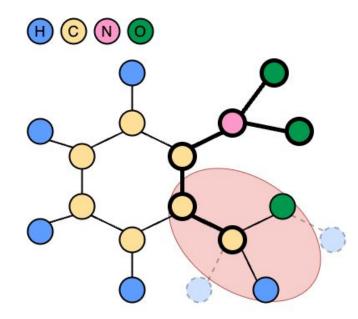
- Introduction
 - Background/Motivation
 - Explanation Structures
 - RCW Verification & Generation Problem
- Methods & Algorithms
 - A1 Verification of Witness
 - A2 Generating Robust Witness
 - A3 Parallel Witness Generation
- Experiment
 - Experiment Settings
 - Experiment Results
- Conclusion & Future Work

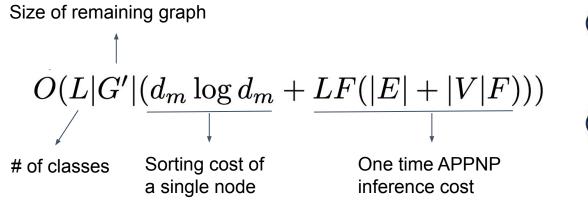
- Factual Verification:
 - Conduct the model inference to verify if the subgraph is a witness.

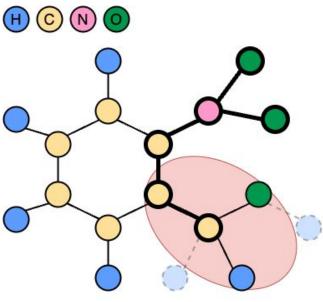

- <u>Factual Verification</u>:
 - Conduct the model inference to verify if the subgraph is a witness.
- <u>Counterfactual Verification</u>:
 - Conduct the model inference to verify if the subgraph is a counterfactual witness.

- <u>Factual Verification</u>:
 - Conduct the model inference to verify if the subgraph is a witness.
- <u>Counterfactual Verification</u>:
 - Conduct the model inference to verify if the subgraph is a counterfactual witness.

• **Robust Verification**:

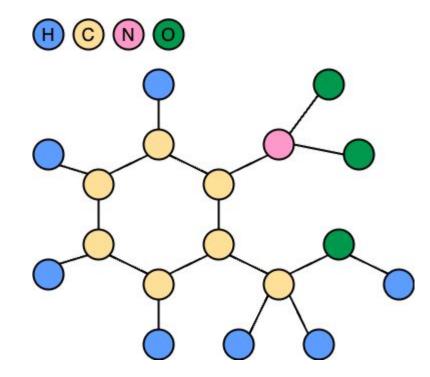

 For each "non-true" label (labels ≠ prediction), verify if the subgraph remains a counterfactual witness under *k* edge flips.

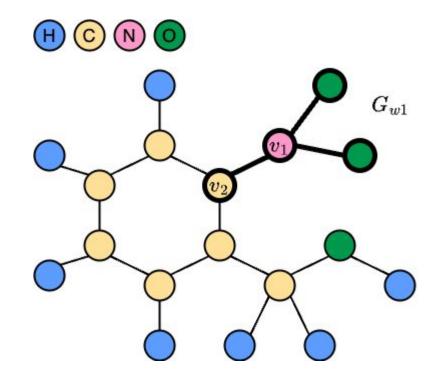


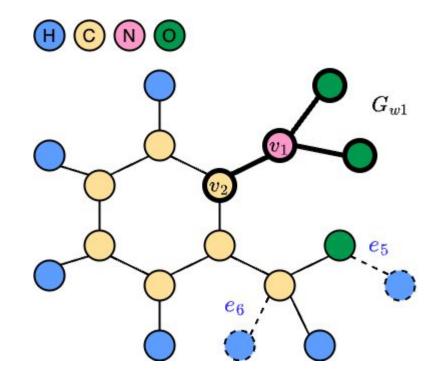

- <u>Factual Verification</u>:
 - Conduct the model inference to verify if the subgraph is a witness.
- <u>Counterfactual Verification</u>:
 - Conduct the model inference to verify if the subgraph is a counterfactual witness.

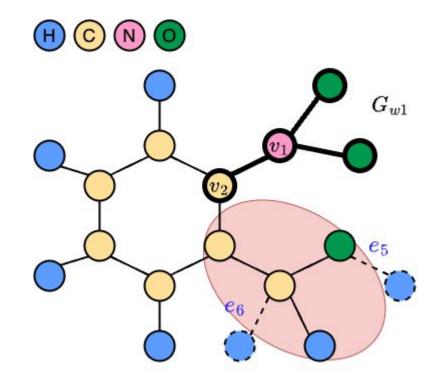
• **Robust Verification**:

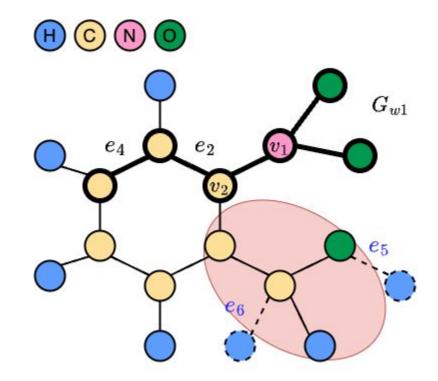
- For each "non-true" label (labels ≠ prediction), verify if the subgraph remains a counterfactual witness under *k* edge flips.
- For each node in the "fragile" area (remaining subgraph), select top-*b* edges that are most likely changing the node labels. (PageRank score)

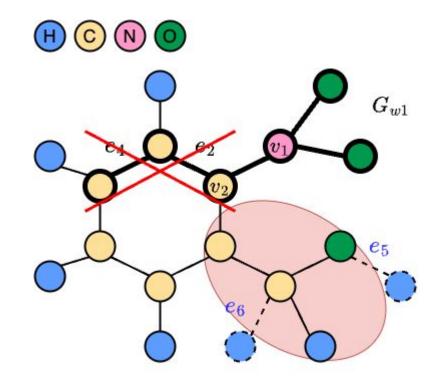


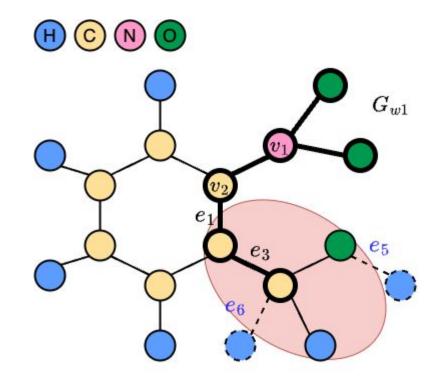

• <u>Expand</u>:

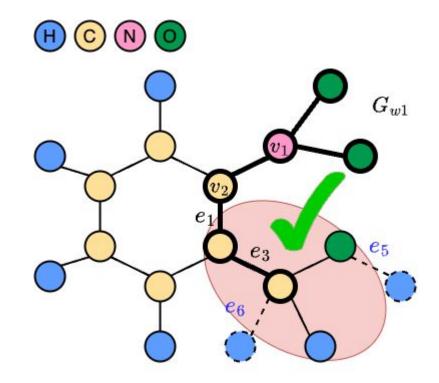

• <u>Verify</u>:


- <u>Expand</u>:
 - Includes node pairs that most likely to change its label if "flipped".
 - Augment the subgraph (initialized with test nodes) with edges that minimize the worst-case margin.
- <u>Verify</u>:


- <u>Expand</u>:
 - Includes node pairs that most likely to change its label if "flipped".
 - Augment the subgraph (initialized with test nodes) with edges that minimize the worst-case margin.
- <u>Verify</u>:
 - Check if the expanded subgraph is RCW
 - Under k-disturbance: k edges that are most likely to change the prediction.







A3 - Parallel Witness Generation

Partition:

- Edge-cut based partition where each worker processes one fragment graph.
- Using a bitmap to record the verified k-disturbance to avoid redundant verification.

• <u>Union</u>:

- Assemble a global subgraph from each worker with the local subgraph.
- In each worker expand and verify local subgraph, and maintain the local bitmap.

Roadmap

- Introduction
 - Background/Motivation
 - Explanation Structures
 - RCW Verification & Generation Problem
- Methods & Algorithms
 - A1 Verification of Witness
 - A2 Generating Robust Witness
 - A3 Parallel Witness Generation
- Experiment
 - Experiment Settings
 - Experiment Results
- Conclusion & Future Work

Dataset	# nodes	# edges	# node features	# class labels
BAHouse	300	1500	-	4
PPI	2,245	61,318	50	121
CiteSeer	3,327	9,104	3,703	6
Reddit	232,965	114,615,892	602	41

- <u>Different domains.</u>
 - **BAHouse**: Synthetic.
 - **PPI**: Protein-Protein Interaction.
 - **CiteSeer**: Citation Network.
 - **Reddit**: Social Network.

• Large Scale.

• **Reddit**: Over one hundred million edges.

Experiment Settings: Baselines

Baselines	Counterfactual	Factual	Robustness
CF-GNNExp (AISTATS 2022)	\checkmark		
CF ² (WWW 2022)	\checkmark	\checkmark	
RoboGExp	\checkmark	\checkmark	\checkmark

<u>CF-GNNExplainer</u>:

• Explainer that considers counterfactual property.

• <u>CF</u>²:

_

• Explainer that considers both counterfactual and factual properties.

RoboGExp:

• Our explainer that considers all the properties: counterfactual, factual, and robustness.

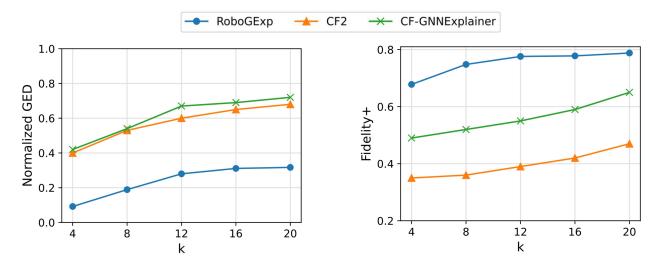
Experiment Settings: Evaluation Metrics

• Normalized GED: normalized
$$\text{GED}(G_w, G'_w) = \frac{\text{GED}(G_w, G'_w)}{\max(|G_w|, |G'_w|)}$$

• Fidelity+:
(Counterfactual)
$$Fidelity + = \frac{1}{|V_T|} \sum_{v \in V_T} (\mathbb{1}(M(v, G) = l) - \mathbb{1}(M(v, G \setminus G_s) = l))$$

• Fidelity-:
(Factual)
$$Fidelity-=\frac{1}{|V_T|}\sum_{v\in V_T}(\mathbbm{1}(M(v,G)=l)-\mathbbm{1}(M(v,G_s)=l))$$

	NormGED	Fidelity+	Fidelity-	Size
RoboGExp	0.32	0.79	0.05	66
CF^2	0.68	0.47	0.06	132
CF-GNNExp	0.72	0.65	0.13	78

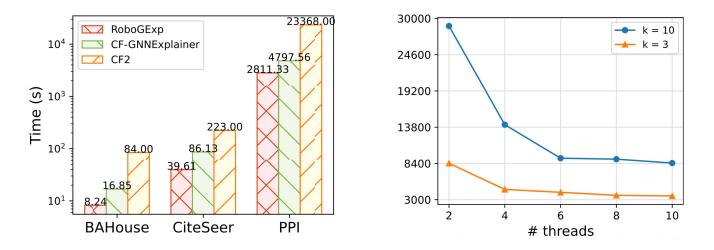

<u>Normalized GED</u>:

• Robustness facilitates the consistency of the explanation under disturbance.

• Fidelity+ and Fidelity-:

- Verification procedure ensures a high fidelity performance.
- <u>Size</u>:
 - RoboGExp integrate the explanation of each test node.

Experiment Results: Effectiveness



- Normalized GED (Consistency):
 - Outperform baselines even under high disturbance.

Fidelity+ (Counterfactual):

• High disturbance enrich the "fragile" search space.

Experiment Results: Efficiency & Scalability

<u>Generation Time (Efficiency)</u>:

• Outperform baselines in various datasets.

Parallel (Scalability):

• Capability of parallelization for scalability.

Roadmap

- Introduction
 - Background/Motivation
 - Explanation Structures
 - RCW Verification & Generation Problem
- Methods & Algorithms
 - A1 Verification of Witness
 - A2 Generating Robust Witness
 - A3 Parallel Witness Generation
- Experiment
 - Experiment Settings
 - Experiment Results
- Conclusion & Future Work

Conclusion & Future Work

<u>Conclusion</u>:

- Explanation structure: *k*-robust counterfactual witness (*k*-RCW).
- Feasible algorithms for verification and generation problems with impressive results.

Future Work:

- Minimal/Minimum explanations.
- Extension to other GNN-based applications.

THANK YOU !

Email: dazhuoq@cs.aau.dk, mxw767@case.edu GitHub: https://github.com/DazhuoQ/RoboGExp

Acknowledgment: Qiu and Khan are support from the Novo Nordisk Foundation grant NNF22OC0072415. Wang and Wu are supported in part by NSF under CNS-1932574, ECCS-1933279, CNS-2028748 and OAC-2104007.

