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. Background/Motivation

e “Black-Box” GNNs:
o The inference of GNN models are black-box.
o Hard to understand which part of the input causes the results.

e “Explainability”:
o Domain experts requires reliable predictions.
o Highly related to trustworthy challenges.
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. Example - “Vulnerable Zone” in Cyber Networks

File 1 Al + GNN-based Security System:
ddos. /h File 3
Sl = e Detection: Train GNN based on historical

Jroot/ e attacks to classify files’ vulnerability.
\ e Jetc/sudoers e Protection: Enhanced  security for

vulnerable files (colored orange).

O Files [] Processes Accessible Routes ~—> Historical Attacks
+ File1 ¥ File2 - Multi-Phase Cyber Attack Strategy:
----- ddOS exe ----- > <=----»C_ File3 e Phase 1: Deception Attacks: Conduct
deceptive but harmless attacks to Induce
/root/ cmd exe breach sh . . .
false invulnerable classification on target.
SN oy
S /etC/S“d°er5 e Phase 2: True Attack: attack by exploiting
O Files [ ] Processes ---» Deceptive attacks =~ —» True attack reduced defenses on target.

__________________________________________________________________________________________________________________

| ¢ How can we identify a "Vulnerable Zone" within cyber networks where, if protected, GNN
. predictions remain solid, even if other parts of the network are disturbed by deceptive attacks?

') Factual Witness, (1)Counterfactual Witness, (# )Robust Counterfactual Witness
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. Explanation Structures

e Factual Explanation (Witness):
o  M(v, G)=M(y, Gs)=1
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. Explanation Structures

e Factual Explanation (Witness):
o  M(v, G)=M(y, Gs)=1

e Counterfactual Explanation (CW):
o My, G)#M(v, G\Gs) #
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. Explanation Structures

e Factual Explanation (Witness):
o  M(v, G)=M(y, Gs)=1

e Counterfactual Explanation (CW):
o My, G)#M(v, G\Gs) #

e Robust Explanation (k-RCW):
o Gs remains consistent under disturbance.
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. Explanation Structures

e Factual Explanation (Witness):
o  M(v, G)=M(y, Gs)=1

e Counterfactual Explanation (CW):
o My, G)#M(v, G\Gs) #

e Robust Explanation (k-RCW):
o Gs remains consistent under disturbance.

We are the first to consider
all three criteria! ==
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. RCW Verification & Generation Problem

e \Verification Problem: Given Gs, decide if Gs is a k-RCW for a set of test nodes Vi, w.r.t a model M.

o  Witness verification <~PTIME.
o CW verification <~ PTIME.

o k-RCW verification <~NP-hard.
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. RCW Verification & Generation Problem

e \Verification Problem: Given Gs, decide if Gs is a k-RCW for a set of test nodes Vi, w.r.t a model M.

o  Witness verification «

o CW verification <~ PTIME.

o k-RCW verification <~NP-hard.

e Generation Problem: Given a graph G and Vt, compute a k-RCW if exists.

o k-RCW generation in general < co-NP-hard

o under (k, b)-disturbances <~PTIME.
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. A1 - Verification of Witness

e Factual Verification:
o Conduct the model inference to verify if the
subgraph is a witness.
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. A1 - Verification of Witness

e Factual Verification:
o Conduct the model inference to verify if the
subgraph is a witness. @ @ ‘

e Counterfactual Verification:
o Conduct the model inference to verify if the
subgraph is a counterfactual witness.
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. A1 - Verification of Witness

Dazhuo Qiu, Mengying Wang, Arijit Khan, Yinghui Wu

Factual Verification:
o Conduct the model inference to verify if the
subgraph is a witness.

Counterfactual Verification:
o Conduct the model inference to verify if the
subgraph is a counterfactual witness.

Robust Verification:
o For each “non-true” label (labels # prediction),
verify if the subgraph remains a counterfactual
witness under k edge flips.
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. A1 - Verification of Witness

e Factual Verification:
o Conduct the model inference to verify if the
subgraph is a witness.

e Counterfactual Verification:
o Conduct the model inference to verify if the
subgraph is a counterfactual witness.

e Robust Verification:
o For each “non-true” label (labels # prediction),
verify if the subgraph remains a counterfactual
witness under k edge flips.

o For each node in the “fragile” area (remaining
subgraph), select top-b edges that are most likely
changing the node labels. (PageRank score)
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. A1 - Verification of Witness

Size of remaining graph

|
O(L|G'|(dm log dwm, + LF(|E| + |V|F)))

/ | |

# of classes Sorting cost of One time APPNP
a single node inference cost
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. A2 - Generating Robust Witness

e Expand:

o Verify:
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. A2 - Generating Robust Witness

e Expand:
o Includes node pairs that most likely to change its label if “flipped”.

o Augment the subgraph (initialized with test nodes) with edges that minimize the
worst-case margin.

o Verify:
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. A2 - Generating Robust Witness

e Expand:
o Includes node pairs that most likely to change its label if “flipped”.

o Augment the subgraph (initialized with test nodes) with edges that minimize the
worst-case margin.
o Verify:
o Check if the expanded subgraph is RCW

o Under k-disturbance: k edges that are most likely to change the prediction.
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A2 - Generating Robust Witness

OO
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. A2 - Generating Robust Witness
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. A2 - Generating Robust Witness
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. A3 - Parallel Witness Generation

e Partition:
o Edge-cut based partition where each worker processes one fragment graph.
o Using a bitmap to record the verified k-disturbance to avoid redundant verification.

e Union:
o Assemble a global subgraph from each worker with the local subgraph.
o In each worker expand and verify local subgraph, and maintain the local bitmap.
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. Experiment Settings: Datasets

Dataset # nodes # edges # node features  # class labels
BAHouse 300 1500 - 4
PPI 2,245 61,318 50 121
CiteSeer 3,327 9,104 3,703 6
Reddit 232,965 114,615,892 602 41

e Different domains.

(@]

©)
©)
©)

BAHouse: Synthetic.

PPI: Protein-Protein Interaction.
CiteSeer: Citation Network.
Reddit: Social Network.

e Large Scale.
Reddit: Over one hundred million edges.

(@]
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. Experiment Settings: Baselines

Baselines

Counterfactual  Factual = Robustness

CF-GNNExp (AISTATS 2022) v
CF2 (WWW 2022) v v
RoboGExp v v v

e CF-GNNExplainer:

o Explainer that considers counterfactual property.

o CFz

o Explainer that considers both counterfactual and factual properties.

e RoboGEXxp:

o  Our explainer that considers all the properties: counterfactual, factual, and

robustness.
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. Experiment Settings: Evaluation Metrics

/
e Normalized GED: normalized GED (G'w , G;u ) GED (Gw ,G )

(Consistency) max(|Gwl, |G )
o Fidelity+: Fidelity+ = —— Y (1(M(v,G) =1) - 1(M(v,G\ G) = 1))
(Counterfactual) |VT| vEVT
L 1
o Fidelity-: Fidelity— = —— 1(M(v,G) =1) —1(M(v,Gs) =1
e bdelity—~= U;T( (M(v,G) =1) = L(M(v,Gs) =1))
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. Experiment Results: Quality of Explanations

NormGED | Fidelity+ | Fidelity- | Size
RoboGExp 0.32 0.79 0.05 66
CF* 0.68 0.47 0.06 132
CF-GNNExp 0.72 0.65 0.13 78

e Normalized GED:
o Robustness facilitates the consistency of the explanation under disturbance.

e Fidelity+ and Fidelity-:
o Verification procedure ensures a high fidelity performance.

o Size:
o RoboGExp integrate the explanation of each test node.
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. Experiment Results: Effectiveness

—8— RoboGEXxp CF2 —é— CF-GNNExplainer
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e Normalized GED (Consistency):
o Outperform baselines even under high disturbance.

e Fidelity+ (Counterfactual):
o High disturbance enrich the “fragile” search space.
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. Experiment Results: Efficiency & Scalability

2
"4 RoboGExp 368,00
104 4 CF-GNNExplainer /
71 CF2 4797.56
2811/.33 \
v 1034 N
(0]
£ 223.00 \
|_
102 4 4.0 86.1 i
; X
16.85 ><
101 E F:?4 X/
BAHouse CiteSeer PPI

e Generation Time (Efficiency):

O

e Parallel (Scalability):

O
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# threads

Outperform baselines in various datasets.

Capability of parallelization for scalability.
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. Conclusion & Future Work

e Conclusion:
o Explanation structure: k-robust counterfactual witness (k-RCW).

o Feasible algorithms for verification and generation problems with impressive
results.
e Future Work:

o  Minimal/Minimum explanations.

o Extension to other GNN-based applications.
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THANK YOU !

Email: dazhuoqg@cs.aau.dk, mxw767@case.edu
GitHub: https://github.com/DazhuoQ/RoboGExp
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